Communications in Mathematical Physics

, Volume 352, Issue 1, pp 95–133 | Cite as

Planar Para Algebras, Reflection Positivity

Article

Abstract

We define a planar para algebra, which arises naturally from combining planar algebras with the idea of \({\mathbb{Z}_{N}}\) para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects that are invariant under para isotopy. For each \({\mathbb{Z}_{N}}\), we construct a family of subfactor planar para algebras that play the role of Temperley–Lieb–Jones planar algebras. The first example in this family is the parafermion planar para algebra (PAPPA). Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras, which one can use in the study of quantum information. An important ingredient in planar para algebra theory is the string Fourier transform (SFT), which we use on the matrix algebra generated by the Pauli matrices. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita–Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivity by relating the two reflections through the string Fourier transform.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ati88.
    Atiyah M.F.: Topological quantum field theory. Publ. Math. l’IHÉS 68, 175–186 (1988)CrossRefMATHGoogle Scholar
  2. AYP16.
    Au-Yang, H., Perk, J.: About 30 years of integrable chiral potts model, quantum groups at roots of unity, and cyclic hypergeometric functions. Proc. Centre Math. Appl. (2016). arXiv:1601.01014
  3. BE98.
    Böckenhauer J., Evans D.E.: Modular invariants, graphs and \({\alpha}\)-induction for nets of subfactors I. Commun. Math. Phys. 197(2), 361–386 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. BMPS12.
    Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. Acta Math. 29–82 (2012)Google Scholar
  5. BW89.
    Birman J., Wenzl H.: Braids, link polynomials and a new algebra. Trans. AMS 313(1), 249–273 (1989)MathSciNetCrossRefMATHGoogle Scholar
  6. CO14.
    Cobanera E., Ortiz G.: Fock parafermions and self-dual representations of the braid group. Phys. Rev. A 89, 012328 (2014)ADSCrossRefGoogle Scholar
  7. ENO05.
    Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 581–642 (2005)Google Scholar
  8. FZ82.
    Fateev V.A., Zamolodchikov A.B.: Self-dual solutions of the star-triangle relations in zn-models. Phys. Lett. A 92(1), 37–39 (1982)ADSMathSciNetCrossRefGoogle Scholar
  9. GJ89.
    Goldschmidt D.M., Jones V.F.R.: Metaplectic link invariants. Geom. Dedic. 31(2), 165–191 (1989)MathSciNetCrossRefMATHGoogle Scholar
  10. JJ16a.
    Jaffe A., Janssens B.: Characterization of reflection positivity: majoranas and spins. Commun. Math. Phys. 346(3), 1021–1050 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. JJ16b.
    Jaffe, A., Janssens, B.: Reflection positive doubles. J. Funct. Anal. (to appear) (2016). arXiv:1607.07126. doi:10.1016/j.jfa.2016.11.014
  12. JLW16a.
    Jaffe, A., Liu, Z.,Wozniakowski, A.: Topological design of protocol (2016). arXiv:1611.06447
  13. JLW16b.
    Jaffe, A., Liu, Z., Wozniakowski, A.: Holographic software for quantum networks (2016). arXiv:1605.00127
  14. JLW16c.
    Jiang C., Liu Z., Wu J.: Noncommutative uncertainty principles. J. Funct. Anal. 270, 264–311 (2016)MathSciNetCrossRefMATHGoogle Scholar
  15. Jon83.
    Jones V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. Jon85.
    Jones, V.F.R.: A Polynomial Invariant for Knots Via von Neumann Algebras. Mathematical Sciences Research Institute (1985)Google Scholar
  17. Jon89.
    Jones V.F.R.: On a certain value of the Kauffman polynomial. Commun. Math. Phys. 125(3), 459–467 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. Jon91.
    Jones V.F.R.: Baxterization. Int. J. Mod. Phys. A 6(12), 2035–2043 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. Jon98.
    Jones, V.F.R.: Planar algebras, I. N. Z. J. Math. (1998). arXiv:math/9909027
  20. Jon12.
    Jones V.F.R.: Quadratic tangles in planar algebras. Duke Math J. 161(12), 2257–2295 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. JP15a.
    Jaffe A., Pedrocchi F.L.: Reflection positivity for majoranas. Ann. Henri Poincaré 16, 189–203 (Springer) (2015)Google Scholar
  22. JP15b.
    Jaffe A., Pedrocchi F.L.: Reflection positivity for parafermions. Commun Math. Phys. 337, 455–472 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. Kau90.
    Kauffman L.H.: An invariant of regular isotopy. Trans AMS. 318, 417–471 (1990)MathSciNetCrossRefMATHGoogle Scholar
  24. Liua.
    Liu, Z.: Exchange relation planar algebras of small rank. Trans. AMS 368, 8303–8348 (2016)Google Scholar
  25. Liub.
    Liu, Z.: Yang–Baxter relation planar algebras. arXiv:1507.06030
  26. LR95.
    Longo R., Rehren K.-H.: Nets of subfactors. Rev. Math. Phys. 7(04), 567–597 (1995)MathSciNetCrossRefMATHGoogle Scholar
  27. MPS10.
    Morrison S., Peters E., Snyder N.: Skein theory for the \({{D}_{2n}}\) planar algebras. J. Pure Appl. Algebra 214, 117–139 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. Mur87.
    Murakami J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24(4), 745–758 (1987)MathSciNetMATHGoogle Scholar
  29. Ocn88.
    Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, vol. 2. London Mathematical Society. Lecture Note Series, vol. 136. Cambridge University Press, Cambridge, pp. 119–172 (1988)Google Scholar
  30. Ocn02.
    Ocneanu A.: The classification of subgroups of quantum SU(N). Contemp. Math. 294, 133–160 (2002)MathSciNetCrossRefMATHGoogle Scholar
  31. OS73a.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun Math. Phys. 31(2), 83–112 (1973)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. OS73b.
    Osterwalder K., Schrader R.: Euclidean Fermi fields and a Feynman–Kac formula for boson–fermion models. Helv. Phys. Acta 46, 277–302 (1973)MathSciNetGoogle Scholar
  33. Ost03.
    Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003)MathSciNetCrossRefMATHGoogle Scholar
  34. Pop90.
    Popa S.: Classification of subfactors: reduction to commuting squares. Invent. Math. 101, 19–43 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. Pop94.
    Popa S.: Classification of amenable subfactors of type II. Acta Math. 172, 352–445 (1994)MathSciNetCrossRefMATHGoogle Scholar
  36. Wen87.
    Wenzl H.: On sequences of projections. C.R. Math. Rep. Acad. Sci. Can. 9(1), 5–9 (1987)MathSciNetMATHGoogle Scholar
  37. Wit88.
    Witten E.: Topological quantum field theory. Commun. Math. Phys. 117(3), 353–386 (1988)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. Xu98.
    Xu F.: New braided endomorphisms from conformal inclusions. Commun. Math. Phys. 192(2), 349–403 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations