Skip to main content
Log in

Nonlinear Asymptotic Stability of the Lane-Emden Solutions for the Viscous Gaseous Star Problem with Degenerate Density Dependent Viscosities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The nonlinear asymptotic stability of Lane-Emden solutions is proved in this paper for spherically symmetric motions of viscous gaseous stars with the density dependent shear and bulk viscosities which vanish at the vacuum, when the adiabatic exponent \({\gamma}\) lies in the stability regime \({(4/3, 2)}\), by establishing the global-in-time regularity uniformly up to the vacuum boundary for the vacuum free boundary problem of the compressible Navier-Stokes-Poisson systems with spherical symmetry, which ensures the global existence of strong solutions capturing the precise physical behavior that the sound speed is \({C^{{1}/{2}}}\)-Hölder continuous across the vacuum boundary, the large time asymptotic uniform convergence of the evolving vacuum boundary, density and velocity to those of Lane-Emden solutions with detailed convergence rates, and the detailed large time behavior of solutions near the vacuum boundary. Those uniform convergence are of fundamental importance in the study of vacuum free boundary problems which are missing in the previous results for global weak solutions. Moreover, the results obtained in this paper apply to much broader cases of viscosities than those in Fang and Zhang (Arch Ration Mech Anal 191:195–243, 2009) for the theory of weak solutions when the adiabatic exponent \({\gamma}\) lies in the most physically relevant range. Finally, this paper extends the previous local-in-time theory for strong solutions to a global-in-time one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandrasekhar S.: An introduction to the study of stellar structures. University of Chicago Press, Chicago (1938)

    Google Scholar 

  2. Coutand D., Shkoller S.: Well-posedness in smooth function spaces for the moving- boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math. 64, 328–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coutand D., Shkoller S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deng Y., Liu T.P., Yang T., Yao Z.: Solutions of Euler-Poisson equations for gaseous stars. Arch. Ration. Mech. Anal. 164(3), 261–285 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ducomet B., Zlotnik A.: Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl. Math. Lett. 18, 1190–1198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan Q.: On the dynamics of Navier-Stokes equations for a shallow water model. J. Differ. Equations 250, 2687–2714 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Duan, Q.: Some Topics on compressible Navier–Stokes equations. Thesis (Ph.D.) The Chinese University of Hong Kong (Hong Kong), p. 153. (2011). ISBN: 978-1267-21445-4, ProQuest LLC.

  8. Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy inequality. Vydavatelsksy Servis, PlzeTn, (2007). About its history and some related results

  9. Fang D.-Y., Zhang T.: Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient. Arch. Ration. Mech. Anal. 182, 223–253 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang D.-Y., Zhang T.: Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients. Arch. Ration. Mech. Anal. 191, 195–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo Z., Li H.-L., Xin Z.: Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations. Commun. Math. Phys. 309(2), 371–412 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Jang J.: Nonlinear instability in gravitational Euler-Poisson system for \({\gamma=\frac{6}{5}}\). Arch. Ration. Mech. Anal. 188(2), 265–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jang J., Masmoudi N.: Well-posedness for compressible Euler with physical vacuum singularity. Commun. Pure Appl. Math. 62, 1327–1385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jang J.: Local well-posedness of dynamics of viscous gaseous stars. Arch. Ration. Mech. Anal. 195, 797–863 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jang J.: Nonlinear instability theory of Lane-Emden stars. Commun. Pure Appl. Math. 67(9), 1418–1465 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jang J., Masmoudi N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68(1), 61–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jang J., Tice I.: Instability theory of the Navier–Stokes–Poisson equations. Anal. PDE 6(5), 1121–1181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang S., Xin Z., Zhang P.: Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl. Anal. 12(3), 239–251 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Lebovitz N.R., Lifschitz A.: Short-wavelength instabilities of Riemann ellipsoids. Philos. Trans. R. Soc. Lond. Ser. A 354(1709), 927–950 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lebovitz N.R.: The virial tensor and its application to self-gravitating fluids. Astrophys. J. 134, 500–536 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lieb E.H., Yau H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lin S.-S.: Stability of gaseous stars in spherically symmetric motions. SIAM J. Math. Anal. 28(3), 539–569 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu T.-P.: Compressible flow with damping and vacuum. Jpn. J. Appl. Math. 13, 25–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu T.-P., Xin Z., Yang T.: Vacuum states of compressible flow. Discrete Contin. Dyn. Syst. 4, 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Liu T.-P., Yang T.: Compressible flow with vacuum and physical singularity. Methods Appl. Anal. 7, 495–509 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Luo T., Smoller J.: Nonlinear dynamical stability of Newtonian rotating and non-rotating white dwarfs and rotating supermassive stars. Commun. Math. Phys. 284(2), 425–457 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Luo T., Smoller J.: Existence and non-linear stability of rotating star solutions of the compressible Euler-Poisson equations. Arch. Ration. Mech. Anal. 191(3), 447–496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luo T., Xin Z., Yang T.: Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J. Math. Anal. 31(6), 1175–1191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo T., Xin Z., Zeng H.: Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation. Arch. Ration. Mech. Anal 213, 763–831 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Luo T., Xin Z., Zeng H.: Nonlinear asymptotic stability of the Lane-Emden solutions for the viscous gaseous star problem. Adv. Math. 291, 90–182 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Makino, T.: On a local existence theorem for the evolution equation of gaseous stars. Patterns and Waves. Stud. Math. Appl., vol. 18, pp. 459–479. North-Holland, Amsterdam (1986)

  32. Matusu-Necasova S., Okada M., Makino T.: Free boundary problem for the equation of spherically symmetric motion of viscous gas III. Jpn. J. Ind. Appl. Math. 14, 199–213 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Okada M.: Free boundary value problems for the equation of one-dimensional motion of viscous gas. Jpn. J. Appl. Math. 6, 161–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Okada M., Makino T.: Free boundary problem for the equations of spherically symmetrical motion of viscous gas. Jpn. J. Ind. Appl. Math. 10, 219–235 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Okada M.: Free boundary problem for one-dimensional motions of compressible gas and vacuum. Jpn. J. Ind. Appl. Math. 21(2), 109–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rein G.: Non-linear stability of gaseous stars. Arch. Ration. Mech. Anal. 168(2), 115–130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Secchi P.: On the evolution equations of viscous gaseous stars. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18(2), 295–318 (1991)

    MathSciNet  MATH  Google Scholar 

  38. Secchi P.: On the uniqueness of motion of viscous gaseous stars. Math. Methods Appl. Sci. 13(5), 391–404 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Shapiro S.H., Teukolsky S.A.: Black Holes, White Dwarfs, and Neutron Stars. WILEY-VCH, USA (2004)

    Google Scholar 

  40. Strohmer G.: Asymptotic estimates for a perturbation of the linearization of an equation for compressible viscous fluid flow. Stud. Math. 185(2), 99–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Weinberg S.: Gravitation and cosmology. Wiley, New York (1972)

    Google Scholar 

  42. Yang T.: Singular behavior of vacuum states for compressible fluids. J. Comput. Appl. Math. 190(1-2), 211–231 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Yang T., Yao Z.-A., Zhu C.: Compressible Navier–Stokes equations with density-dependent viscosity and vacuum. (English summary) Comm. Partial Differ. Equations 26(5-6), 965–981 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang T., Zhu C.: Compressible Navier–Stokes equations with degenerate viscosity coefficient and vacuum. Commun. Math. Phys. 230(2), 329–363 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Zhu C., Zi R.: Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete Contin. Dyn. Syst. 30(4), 1263–1283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Luo.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Xin, Z. & Zeng, H. Nonlinear Asymptotic Stability of the Lane-Emden Solutions for the Viscous Gaseous Star Problem with Degenerate Density Dependent Viscosities. Commun. Math. Phys. 347, 657–702 (2016). https://doi.org/10.1007/s00220-016-2753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2753-1

Navigation