Communications in Mathematical Physics

, Volume 349, Issue 3, pp 1163–1202 | Cite as

Dynamics for QCD on an Infinite Lattice



We prove the existence of the dynamics automorphism group for Hamiltonian QCD on an infinite lattice in \({{\mathbb{R}}^3}\), and this is done in a C*-algebraic context. The existence of ground states is also obtained. Starting with the finite lattice model for Hamiltonian QCD developed by Kijowski, Rudolph (cf. J Math Phys 43:1796–1808 [15], J Math Phys 46:032303 [16]), we state its field algebra and a natural representation. We then generalize this representation to the infinite lattice, and construct a Hilbert space which has represented on it all the local algebras (i.e., kinematics algebras associated with finite connected sublattices) equipped with the correct graded commutation relations. On a suitably large C*-algebra acting on this Hilbert space, and containing all the local algebras, we prove that there is a one parameter automorphism group, which is the pointwise norm limit of the local time evolutions along a sequence of finite sublattices, increasing to the full lattice. This is our global time evolution. We then take as our field algebra the C*-algebra generated by all the orbits of the local algebras w.r.t. the global time evolution. Thus the time evolution creates the field algebra. The time evolution is strongly continuous on this choice of field algebra, though not on the original larger C*-algebra. We define the gauge transformations, explain how to enforce the Gauss law constraint, show that the dynamics automorphism group descends to the algebra of physical observables and prove that gauge invariant ground states exist.


  1. 1.
    Blackadar B.: Operator Algebras. Springer, Berlin (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, New York (1987)CrossRefMATHGoogle Scholar
  3. 3.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 2. Equilibrium States, Models in Quantum Statistical Mechanics. Springer, New York (1981)MATHGoogle Scholar
  4. 4.
    Bruening J., Heintze E.: Representations of compact Lie groups and elliptic operators. Invent. Math. 50, 169–203 (1979)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Buchholz D., Grundling H.: The resolvent algebra: a new approach to canonical quantum systems. J. Funct. Anal. 254, 2725–2779 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dixmier J.: C*-Algebras. North Holland Publishing Company, Amsterdam (1977)MATHGoogle Scholar
  7. 7.
    Fang, Y.-Z., Luo, X.-Q.: Hamiltonian lattice QCD with Wilson fermions at strong coupling. Int. J. Mod. Phys. A16, 4499-4510 (2001). arXiv:hep-lat/0108025v1
  8. 8.
    Grundling H., Neeb K.-H.: Full regularity for a C*-algebra of the canonical commutation relations. Rev. Math. Phys. 21, 587–613 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Grundling H., Rudolph G.: QCD on an infinite lattice. Commun. Math. Phys 318, 717–766 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grundling H.: Quantum constraints. Rep. Math. Phys 57, 97–120 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Grundling H., Neeb K.-H.: Crossed products of C*-algebras for singular actions. J. Funct. Anal 266, 5199–5269 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Huebschmann J., Rudolph G., Schmidt M.: A gauge model for quantum mechanics on a stratified space. Commun. Math. Phys 286, 459–494 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Jarvis P.D., Kijowski J., Rudolph G.: On the structure of the observable algebra of QCD on the lattice. J. Phys. A: Math. Gen 38, 5359–5377 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kadison R.V., Ringrose J.R.: Fundamentals of the Theory of Operator Algebras II. Academic Press, New York (1983)MATHGoogle Scholar
  15. 15.
    Kijowski J., Rudolph G.: On the Gauss law and global charge for quantum chromodynamics. J. Math. Phys 43, 1796–1808 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kijowski J., Rudolph G.: Charge superselection sectors for QCD on the lattice. J. Math. Phys. 46, 032303 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kogut J., Susskind L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395–408 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    Kogut, J.: Three Lectures on Lattice Gauge Theory. CLNS-347 (1976), Lecture Series Presented at the International Summer School, McGill University, June 21–26, 1976. In: Satz H. (ed.) Many Degrees of Freedom in Particle Theory, vol. 31. NATO Advanced Study Institutes Series, Springer (1978)Google Scholar
  19. 19.
    Lawson H.B., Michelson M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)Google Scholar
  20. 20.
    Nachtergaele, B., Sims, R.: Lieb–Robinson bounds in quantum many-body physics. Contemp. Math. 529, p. 141, Amer. Math. Soc., Providence, RI: (2010). This published argument contains some errors and omissions. A corrected version of the argument is in [21]Google Scholar
  21. 21.
    Nachtergaele, B., Sims, R.: On the dynamics of lattice systems with unbounded on-site terms in the Hamiltonian. arXiv:1410.8174v1
  22. 22.
    Pedersen G.K.: C*-Algebras and their Automorphism Groups. Academic Press, London (1989)Google Scholar
  23. 23.
    Pier J.-P.: Amenable locally compact groups. Wiley, New York (1984)MATHGoogle Scholar
  24. 24.
    Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. 2. Academic Press, San Diego (1975)MATHGoogle Scholar
  25. 25.
    Rieffel M.A.: On the uniqueness of the Heisenberg commutation relations. Duke Math. J. 39, 745–752 (1972)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Schaefer H.H.: Topological vector spaces. Macmillan company, New York (1966)MATHGoogle Scholar
  27. 27.
    Seiler, E.: Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics, Lecture Notes in Physics, vol. 159. Springer, Berlin (1982)Google Scholar
  28. 28.
    Seiler, E.: “Constructive Quantum Field Theory: Fermions”. In: Dita, P., Georgescu, V., Purice, R. (eds.) Gauge Theories: Fundamental Interactions and Rigorous Results (Poiana Brasov, 1981), pp 263–310. Birkhauser, Basel (1982)Google Scholar
  29. 29.
    v. Neumann, J.: On infinite direct products. Comp. Math. 6, 1–77. In: Taub, A.H. (ed.) Collected Works, vol. 3, Chapter 6. Pergamon Press, Oxford (1961)Google Scholar
  30. 30.
    Wilson K.G.: Confinement of quarks. Phys. Rev. D 10, 2445 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    Wilson, K.G.: Quarks and strings on a lattice, p. 69 in new phenomena in subnuclear physics. Part A. In: Zichichi, A. (ed.) Proceedings of the International School of Subnuclear Physics, Erice 1975. Plenum Press, New York (1977)Google Scholar
  32. 32.
    Yosida K.: Functional Analysis. Springer, Berlin (1980)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of New South WalesSydneyAustralia
  2. 2.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany

Personalised recommendations