Communications in Mathematical Physics

, Volume 349, Issue 2, pp 661–702 | Cite as

The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup

Article

Abstract

We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-algebraic geometry to convert invariants of the orthosymplectic supergroup into invariants of the corresponding general linear supergroup on a different space. In this way, super Schur–Weyl–Brauer duality is established between the orthosymplectic supergroup of superdimension (m|2n) and the Brauer algebra with parameter m − 2n. The result may be interpreted either in terms of the group scheme OSp(V) over \({{\mathbb C}}\), where V is a finite dimensional super space, or as a statement about the orthosymplectic Lie supergroup over the infinite dimensional Grassmann algebra \({\Lambda}\). We take the latter point of view here, and also state a corresponding theorem for the orthosymplectic Lie superalgebra, which involves an extra invariant generator, the super-Pfaffian.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah M., Bott R., Patodi V.K.: On the heat equation and the index theorem. Invent. Math. 19, 279–330 (1973)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Benkart G., Shader CL, Ram A: Tensor product representations for orthosymplectic Lie superalgebras. J. Pure Appl. Algebra 130(1), 1–48 (1998)CrossRefMATHGoogle Scholar
  3. 3.
    Berele A., Regev A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987)CrossRefMATHGoogle Scholar
  4. 4.
    Brundan J., Stroppel C.: Gradings on walled Brauer algebras and Khovanov’s arc algebra. Adv. Math. 231, 709–773 (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Carmeli, C., Caston, L., Fioresi, R.: Mathematical foundations of supersymmetry. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2011)Google Scholar
  6. 6.
    Cheng S.-J., Wang W.: Howe duality for Lie superalgebras. Compos. Math. 128(1), 55–94 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Cheng S.-J., Zhang R.B.: Howe duality and combinatorial character formula for orthosymplectic Lie superalgebras. Adv. Math. 182(1), 124–172 (2004)CrossRefMATHGoogle Scholar
  8. 8.
    Cheng S.-J., Lam N., Zhang R.B.: Character formula for infinite-dimensional unitarizable modules of the general linear superalgebra. J. Algebra 273(2), 780–805 (2004)CrossRefMATHGoogle Scholar
  9. 9.
    Deligne, P., Lehrer, G.I., Zhang, R.B.: The first fundamental theorem of invariant theory for the orthosymplectic super group. arXiv:1508.04202 [math.GR]
  10. 10.
    Deligne, P., Morgan, J.W.: Notes on Supersymmetry (following Joseph Bernstein). Quantum Fields and Strings: A Course for Mathematicians, vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 41–97. Amer. Math. Soc., Providence, RI (1999)Google Scholar
  11. 11.
    De Witt, B.: Supermanifolds, 2nd edn. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1992)Google Scholar
  12. 12.
    Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups, Cambridge University Press, third corrected printing (2003)Google Scholar
  13. 13.
    Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)Google Scholar
  14. 14.
    Graham J.J., Lehrer G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)ADSCrossRefMATHGoogle Scholar
  15. 15.
    Graham J.J., Lehrer G.I.: The representation theory of affine Temperley–Lieb algebras. Enseign. Math (2). 44(3–4), 173–218 (1998)MATHGoogle Scholar
  16. 16.
    Graham J.J., Lehrer G.I.: Diagram algebras, Hecke algebras and decomposition numbers at roots of unity. Ann. Sci. École Norm. Sup. 36, 479–524 (2003)MATHGoogle Scholar
  17. 17.
    Grahamm, J.J., Lehrer, G.I.: Cellular algebras and diagram algebras in representation theory. Representation Theory of Algebraic Groups and Quantum Groups. Adv. Stud. Pure Math., vol. 40. Math. Soc. Japan, Tokyo, pp. 141–173 (2004)Google Scholar
  18. 18.
    Gould M.D., Zhang R.B.: Classification of all star irreps of gl(m|n). J. Math. Phys. 31(11), 2552–2559 (1990)ADSCrossRefMATHGoogle Scholar
  19. 19.
    Howe R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313(2), 539–570 (1989)CrossRefMATHGoogle Scholar
  20. 20.
    Kac V.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)CrossRefMATHGoogle Scholar
  21. 21.
    Kostant, B.: Graded manifolds, graded Lie theory, and prequantization. In: Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), pp. 177–306. Lecture Notes in Math., vol. 570, Springer, Berlin (1977)Google Scholar
  22. 22.
    Lehrer G.I., Zhang R.B.: Strongly multiplicity free modules for Lie algebras and quantum groups. J. Algebra 306, 138–174 (2006)CrossRefMATHGoogle Scholar
  23. 23.
    Lehrer, G.I., Zhang, R.B.: A Temperley–Lieb analogue for the BMV algebra. In: Representation Theory of Algebraic Groups and Quantum Groups, pp. 155–190. Progr. Math., vol. 284. Birkhäuser/Springer, New York (2010)Google Scholar
  24. 24.
    Lehrer G.I., Zhang R.B.: On endomorphisms of quantum tensor space. Lett. Math. Phys. 86, 209–227 (2008)ADSCrossRefMATHGoogle Scholar
  25. 25.
    Lehrer G.I., Zhang R.B.: The second fundamental theorem of invariant theory for the orthogonal group. Ann. Math. 176, 2031–2054 (2012)CrossRefMATHGoogle Scholar
  26. 26.
    Lehrer G.I., Zhang R.B.: The Brauer category and invariant theory. J. Eur. Math. Soc. (JEMS) 17, 2311–2351 (2015)CrossRefMATHGoogle Scholar
  27. 27.
    Lehrer G.I., Zhang H., Zhang R.B.: A quantum analogue of the first fundamental theorem of invariant theory. Commun. Math. Phys. 301, 131–174 (2011)ADSCrossRefMATHGoogle Scholar
  28. 28.
    Manin, Y.I.: Gauge Field Theory and Complex Geometry. Grundlehren der Mathematischen Wissenschaften, vol. 289. Springer-Verlag, Berlin (1988)Google Scholar
  29. 29.
    Procesi, C.: Lie Groups. An Approach Through Invariants and Representations, pp. xxiv+596. Universitext. Springer, New York (2007)Google Scholar
  30. 30.
    Rui, H., Su, Y.: Affine walled Brauer algebras. Adv. Math. 285, 28–71 (2015)Google Scholar
  31. 31.
    Salam A., Strathdee J.: Super-gauge transformations. Nucl. Phys. B 76, 477–482 (1974)ADSCrossRefGoogle Scholar
  32. 32.
    Scheunert M.: Graded tensor calculus. J. Math. Phys. 24(11), 2658–2670 (1983)ADSCrossRefMATHGoogle Scholar
  33. 33.
    Scheunert M.: Casimir elements of \({\varepsilon}\) Lie algebras. J. Math. Phys. 24(11), 2671–2680 (1983)ADSCrossRefMATHGoogle Scholar
  34. 34.
    Scheunert M: Eigenvalues of Casimir operators for the general linear, the special linear and the orthosymplectic Lie superalgebras. J. Math. Phys. 24(11), 2681–2688 (1983)ADSCrossRefMATHGoogle Scholar
  35. 35.
    Scheunert, M.: The Theory of Lie Superalgebras; An Introduction. Lecture Notes in Math., vol. 716. Springer-Verlag, Berlin (1979)Google Scholar
  36. 36.
    Scheunert M., Zhang R.B.: Invariant integration on classical and quantum Lie supergroups. J. Math. Phys. 42(8), 3871–3897 (2001)ADSCrossRefMATHGoogle Scholar
  37. 37.
    Scheunert M., Zhang R.B.: The general linear supergroup and its Hopf superalgebra of regular functions. J. Algebra 254(1), 44–83 (2002)CrossRefMATHGoogle Scholar
  38. 38.
    Scheunert M., Zhang R.B.: Integration on Lie supergroups: a Hopf algebra approach. J. Algebra 292, 324–342 (2005)CrossRefMATHGoogle Scholar
  39. 39.
    Sergeev, A.: An analogue of the classical theory of invariants for Lie superalgebras (Russian). Funktsional. Anal. i Prilozhen. 26(3), 88–90 (1992); translation in Funct. Anal. Appl. 26 (1992), no. 3, 223–225Google Scholar
  40. 40.
    Sergeev A.: An analog of the classical invariant theory for Lie superalgebras. I. Mich. Math. J. 49(1), 113–146 (2001)CrossRefMATHGoogle Scholar
  41. 41.
    Sergeev A.: An analog of the classical invariant theory for Lie superalgebras. II. Mich. Math. J. 49(1), 147–168 (2001)CrossRefMATHGoogle Scholar
  42. 42.
    Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes in Mathematics, vol. 11. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2004)Google Scholar
  43. 43.
    Wu Y., Zhang R.B.: Unitary highest weight representations of quantum general linear superalgebra. J. Algebra 321(11), 3568–3593 (2009)CrossRefMATHGoogle Scholar
  44. 44.
    Zhang R.B.: Finite-dimensional irreducible representations of the quantum supergroup U q(gl(m/n)). J. Math. Phys. 34(3), 1236–1254 (1993)ADSCrossRefMATHGoogle Scholar
  45. 45.
    Zhang R.B.: Structure and representations of the quantum general linear supergroup. Commun. Math. Phys. 195(3), 525–547 (1998)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia

Personalised recommendations