Advertisement

Communications in Mathematical Physics

, Volume 351, Issue 1, pp 249–282 | Cite as

Semidirect Products of C*-Quantum Groups: Multiplicative Unitaries Approach

  • Ralf Meyer
  • Sutanu RoyEmail author
  • Stanisław Lech Woronowicz
Article

Abstract

C*-quantum groups with projection are the noncommutative analogues of semidirect products of groups. Radford’s Theorem about Hopf algebras with projection suggests that any C*-quantum group with projection decomposes uniquely into an ordinary C*-quantum group and a “braided” C*-quantum group. We establish this on the level of manageable multiplicative unitaries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baaj, S.: Représentation régulière du groupe quantique \({E_\mu (2)}\) de Woronowicz. C. R. Acad. Sci. Paris Sér. I Math. 314(13), 1021–1026 (1992). http://gallica.bnf.fr/ark:/12148/bpt6k58688425/f1025.item
  2. 2.
    Buss, A.: Generalized fixed point algebras for coactions of locally compact quantum groups. Doctoral Thesis, Univ. Münster (2007)Google Scholar
  3. 3.
    Buss, A.: Generalized fixed point algebras for coactions of locally compact quantum groups. Münster J. Math. 6, 295–341 (2013). http://nbn-resolving.de/urn:nbn:de:hbz:6-55309458343
  4. 4.
    Daws, M., Kasprzak, P., Skalski, A.G., Sołtan, P.M.: Closed quantum subgroups of locally compact quantum groups. Adv. Math. 231(6), 3473–3501 (2012). doi: 10.1016/j.aim.2012.09.002
  5. 5.
    Kasprzak, P., Meyer, R., Roy, S., Woronowicz, S.L.: Braided quantum SU(2) groups. J. Noncommut. Geom. (2016). arxiv:1411.3218
  6. 6.
    Kasprzak P., Sołtan P.M.: Quantum groups with projection on von neumann algebra level. J. Math. Anal. Appl 427(1), 289–306 (2015). doi: 10.1016/j.jmaa.2015.02.047 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kasprzak, P., Sołtan, P.M.: Quantum groups with projection and extensions of locally compact quantum groups (2014). arxiv:1412.0821
  8. 8.
    Majid, S.: Algebras and Hopf algebras in braided categories. Advances in Hopf algebras (Chicago, IL, 1992), pp. 55–105 (1994)Google Scholar
  9. 9.
    Meyer R.: Generalized fixed point algebras and square-integrable groups actions. J. Funct. Anal 186(1), 167–195 (2001). doi: 10.1006/jfan.2001.3795 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Meyer, R., Roy, S., Woronowicz, S.L.: Homomorphisms of quantum groups. Münster J. Math. 5, 1–24 (2012). http://nbn-resolving.de/urn:nbn:de:hbz:6-88399662599
  11. 11.
    Meyer, R., Roy, S., Woronowicz, S.L.: Quantum group-twisted tensor products of C*-algebras. Internat. J. Math. 25(2), 1450019, 37 (2014). doi: 10.1142/S0129167X14500190
  12. 12.
    Meyer, R., Roy, S., Woronowicz, S.L.: Quantum group-twisted tensor products of C*-algebras II. J. Noncommut. Geom. (2016). arxiv:1501.04432
  13. 13.
    Nest R., Voigt C.: Equivariant Poincaré duality for quantum group actions. J. Funct. Anal 258(5), 1466–1503 (2010). doi: 10.1016/j.jfa.2009.10.015 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ng, C.-K.: Morphisms of multiplicative unitaries. J. Oper. Theory. 38(2), 203–224 (1997). http://www.theta.ro/jot/archive/1997-038-002/1997-038-002-001.html
  15. 15.
    Radford D.E.: The structure of Hopf algebras with a projection. J. Algebra 92(2), 322–347 (1985). doi: 10.1016/0021-8693(85)90124-3 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rieffel M.A: Integrable and proper actions on C*-algebras, and square-integrable representations of groups. Expo. Math. 22(1), 1–53 (2004). doi: 10.1016/S0723-0869(04)80002-1 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Roy, S.: C*-Quantum groups with projection. Ph.D. Thesis, Georg-August Universität Göttingen (2013). http://hdl.handle.net/11858/00-1735-0000-0022-5EF9-0
  18. 18.
    Roy, S.: The Drinfeld double for C*-algebraic quantum groups. J. Oper. Theory 74(2), 485–515 (2015). http://www.mathjournals.org/jot/2015-074-002/2015-074-002-010.html
  19. 19.
    Roy, S.: Braided C*-quantum groups (2016). arXiv:1601.00169
  20. 20.
    Sołtan P.M.: New quantum “\({az+b}\)” groups. Rev. Math. Phys. 17(3), 313–364 (2005). doi: 10.1142/S0129055X05002339 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sołtan, P.M., Woronowicz, S.L.: From multiplicative unitaries to quantum groups. II. J. Funct. Anal 252(1), 42–67 (2007). doi: 10.1016/j.jfa.2007.07.006
  22. 22.
    Stachura P.: Towards a topological (dual of) quantum \({\kappa}\)-Poincaré group. Rep. Math. Phys 57(2), 233–256 (2006). doi: 10.1016/S0034-4877(06)80019-4 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stachura P.: On the quantum ‘\({ax+b}\)’ group. J. Geom. Phys 73, 125–149 (2013). doi: 10.1016/j.geomphys.2013.05.006 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vaes S.: A new approach to induction and imprimitivity results. J. Funct. Anal 229(2), 317–374 (2005). doi: 10.1016/j.jfa.2004.11.016 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Vaes S., Vainerman L.: Extensions of locally compact quantum groups and the bicrossed product construction. Adv. Math 175(1), 1–101 (2003). doi: 10.1016/S0001-8708(02)00040-3 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Woronowicz S.L.: Quantum E(2) group and its Pontryagin dual. Lett. Math. Phys. 23(4), 251–263 (1991). doi: 10.1007/BF00398822 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Woronowicz S.L.: C*-algebras generated by unbounded elements. Rev. Math. Phys. 7(3), 481–521 (1995). doi: 10.1142/S0129055X95000207 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Woronowicz S.L.: From multiplicative unitaries to quantum groups. Internat. J. Math. 7(1), 127–149 (1996). doi: 10.1142/S0129167X96000086 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Woronowicz S.L.: Quantum ‘\({az+b}\)’ group on complex plane. Internat. J. Math. 12(4), 461–503 (2001). doi: 10.1142/S0129167X01000836 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Woronowicz, S.L.: Operator equalities related to the quantum E(2) group. Commun. Math. Phys. 144(2), 417–428 (1992). http://projecteuclid.org/euclid.cmp/1104249324
  31. 31.
    Woronowicz S.L., Zakrzewski S.: Quantum ‘\({ax+b}\)’ group. Rev. Math. Phys 14, 7–8 (2002). doi: 10.1142/S0129055X02001405 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ralf Meyer
    • 1
  • Sutanu Roy
    • 2
    Email author
  • Stanisław Lech Woronowicz
    • 3
    • 4
  1. 1.Mathematisches InstitutGeorg-August Universität GöttingenGöttingenGermany
  2. 2.School of Mathematics and StatisticsCarleton UniversityOttawaCanada
  3. 3.Instytut Matematyczny Polskiej Akademii NaukWarsawPoland
  4. 4.Katedra Metod Matematycznych Fizyki, Wydział FizykiUniwersytet WarszawskiWarsawPoland

Personalised recommendations