Semidirect Products of C*-Quantum Groups: Multiplicative Unitaries Approach
Abstract
C*-quantum groups with projection are the noncommutative analogues of semidirect products of groups. Radford’s Theorem about Hopf algebras with projection suggests that any C*-quantum group with projection decomposes uniquely into an ordinary C*-quantum group and a “braided” C*-quantum group. We establish this on the level of manageable multiplicative unitaries.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Baaj, S.: Représentation régulière du groupe quantique \({E_\mu (2)}\) de Woronowicz. C. R. Acad. Sci. Paris Sér. I Math. 314(13), 1021–1026 (1992). http://gallica.bnf.fr/ark:/12148/bpt6k58688425/f1025.item
- 2.Buss, A.: Generalized fixed point algebras for coactions of locally compact quantum groups. Doctoral Thesis, Univ. Münster (2007)Google Scholar
- 3.Buss, A.: Generalized fixed point algebras for coactions of locally compact quantum groups. Münster J. Math. 6, 295–341 (2013). http://nbn-resolving.de/urn:nbn:de:hbz:6-55309458343
- 4.Daws, M., Kasprzak, P., Skalski, A.G., Sołtan, P.M.: Closed quantum subgroups of locally compact quantum groups. Adv. Math. 231(6), 3473–3501 (2012). doi: 10.1016/j.aim.2012.09.002
- 5.Kasprzak, P., Meyer, R., Roy, S., Woronowicz, S.L.: Braided quantum SU(2) groups. J. Noncommut. Geom. (2016). arxiv:1411.3218
- 6.Kasprzak P., Sołtan P.M.: Quantum groups with projection on von neumann algebra level. J. Math. Anal. Appl 427(1), 289–306 (2015). doi: 10.1016/j.jmaa.2015.02.047 MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Kasprzak, P., Sołtan, P.M.: Quantum groups with projection and extensions of locally compact quantum groups (2014). arxiv:1412.0821
- 8.Majid, S.: Algebras and Hopf algebras in braided categories. Advances in Hopf algebras (Chicago, IL, 1992), pp. 55–105 (1994)Google Scholar
- 9.Meyer R.: Generalized fixed point algebras and square-integrable groups actions. J. Funct. Anal 186(1), 167–195 (2001). doi: 10.1006/jfan.2001.3795 MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Meyer, R., Roy, S., Woronowicz, S.L.: Homomorphisms of quantum groups. Münster J. Math. 5, 1–24 (2012). http://nbn-resolving.de/urn:nbn:de:hbz:6-88399662599
- 11.Meyer, R., Roy, S., Woronowicz, S.L.: Quantum group-twisted tensor products of C*-algebras. Internat. J. Math. 25(2), 1450019, 37 (2014). doi: 10.1142/S0129167X14500190
- 12.Meyer, R., Roy, S., Woronowicz, S.L.: Quantum group-twisted tensor products of C*-algebras II. J. Noncommut. Geom. (2016). arxiv:1501.04432
- 13.Nest R., Voigt C.: Equivariant Poincaré duality for quantum group actions. J. Funct. Anal 258(5), 1466–1503 (2010). doi: 10.1016/j.jfa.2009.10.015 MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Ng, C.-K.: Morphisms of multiplicative unitaries. J. Oper. Theory. 38(2), 203–224 (1997). http://www.theta.ro/jot/archive/1997-038-002/1997-038-002-001.html
- 15.Radford D.E.: The structure of Hopf algebras with a projection. J. Algebra 92(2), 322–347 (1985). doi: 10.1016/0021-8693(85)90124-3 MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Rieffel M.A: Integrable and proper actions on C*-algebras, and square-integrable representations of groups. Expo. Math. 22(1), 1–53 (2004). doi: 10.1016/S0723-0869(04)80002-1 MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Roy, S.: C*-Quantum groups with projection. Ph.D. Thesis, Georg-August Universität Göttingen (2013). http://hdl.handle.net/11858/00-1735-0000-0022-5EF9-0
- 18.Roy, S.: The Drinfeld double for C*-algebraic quantum groups. J. Oper. Theory 74(2), 485–515 (2015). http://www.mathjournals.org/jot/2015-074-002/2015-074-002-010.html
- 19.Roy, S.: Braided C*-quantum groups (2016). arXiv:1601.00169
- 20.Sołtan P.M.: New quantum “\({az+b}\)” groups. Rev. Math. Phys. 17(3), 313–364 (2005). doi: 10.1142/S0129055X05002339 MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Sołtan, P.M., Woronowicz, S.L.: From multiplicative unitaries to quantum groups. II. J. Funct. Anal 252(1), 42–67 (2007). doi: 10.1016/j.jfa.2007.07.006
- 22.Stachura P.: Towards a topological (dual of) quantum \({\kappa}\)-Poincaré group. Rep. Math. Phys 57(2), 233–256 (2006). doi: 10.1016/S0034-4877(06)80019-4 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 23.Stachura P.: On the quantum ‘\({ax+b}\)’ group. J. Geom. Phys 73, 125–149 (2013). doi: 10.1016/j.geomphys.2013.05.006 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 24.Vaes S.: A new approach to induction and imprimitivity results. J. Funct. Anal 229(2), 317–374 (2005). doi: 10.1016/j.jfa.2004.11.016 MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Vaes S., Vainerman L.: Extensions of locally compact quantum groups and the bicrossed product construction. Adv. Math 175(1), 1–101 (2003). doi: 10.1016/S0001-8708(02)00040-3 MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Woronowicz S.L.: Quantum E(2) group and its Pontryagin dual. Lett. Math. Phys. 23(4), 251–263 (1991). doi: 10.1007/BF00398822 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 27.Woronowicz S.L.: C*-algebras generated by unbounded elements. Rev. Math. Phys. 7(3), 481–521 (1995). doi: 10.1142/S0129055X95000207 MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Woronowicz S.L.: From multiplicative unitaries to quantum groups. Internat. J. Math. 7(1), 127–149 (1996). doi: 10.1142/S0129167X96000086 MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Woronowicz S.L.: Quantum ‘\({az+b}\)’ group on complex plane. Internat. J. Math. 12(4), 461–503 (2001). doi: 10.1142/S0129167X01000836 MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Woronowicz, S.L.: Operator equalities related to the quantum E(2) group. Commun. Math. Phys. 144(2), 417–428 (1992). http://projecteuclid.org/euclid.cmp/1104249324
- 31.Woronowicz S.L., Zakrzewski S.: Quantum ‘\({ax+b}\)’ group. Rev. Math. Phys 14, 7–8 (2002). doi: 10.1142/S0129055X02001405 MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2016