Communications in Mathematical Physics

, Volume 352, Issue 1, pp 1–36 | Cite as

Spin(7)-Instantons, Cayley Submanifolds and Fueter Sections



We prove an existence theorem for Spin(7)-instantons, which are highly concentrated near a Cayley submanifold; thus giving a partial converse to Tian’s foundational compactness theorem (Ann Math (2) 151(1):193–268, 2000). As an application, we show how to construct Spin(7)-instantons on Spin(7)-manifolds with suitable local K3 Cayley fibrations. This recovers an example constructed by Lewis (Spin(7) instantons, Ph.D. Thesis, 1998).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bre03a.
    Brendle, S.: Complex anti-self-dual instantons and Cayley submanifolds. arXiv:math/0302094v2 (2003)
  2. Bre03b.
    Brendle, S.: On the construction of solutions to the Yang–Mills equations in higher dimensions. arXiv:math/0302093v3 (2003)
  3. CDFN83.
    Corrigan E., Devchand C., Fairlie D.B., Nuyts J.: First-order equations for gauge fields in spaces of dimension greater than four. Nucl. Phys. B 214(3), 452–464 (1983)ADSMathSciNetCrossRefGoogle Scholar
  4. DK90.
    Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, Oxford Science Publications. Zbl0904.57001 (1990)
  5. Don83.
    Donaldson, S.K.: An application of gauge theory to four-dimensional topology. J. Differ. Geom. 18(2), 279–315. Zbl0507.57010 (1983)
  6. DS11.
    Donaldson, S.K., Segal, E.P.: Gauge theory in higher dimensions, II, Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics, pp. 1–41. Zbl1256.53038 (2011)
  7. DT98.
    Donaldson, S.K., Thomas, R.P.: Gauge Theory in Higher Dimensions. The Geometric Universe (Oxford, 1996), pp. 31–47. Zbl0926.58003 (1998)
  8. Hay12.
    Haydys, A.: Gauge theory, calibrated geometry and harmonic spinors. J. Lond. Math. Soc. 86(2), 482–498. Zbl1256.81080 (2012)
  9. HL82.
    Harvey, R., Lawson, H.B., Jr.: Calibrated geometries. Acta Math. 148, 47–157. Zbl0584.53021 (1982)
  10. Joy00.
    Joyce, D.D.: Compact manifolds with special holonomy, Oxford Mathematical Monographs. Oxford University Press, Oxford. Zbl1200.53003 (2000)
  11. Joy96.
    Joyce, D.D.: Compact 8-manifolds with holonomy Spin(7). Invent. Math. 123(3), 507–552. Zbl0858.53037 (1996)
  12. Joy99.
    Joyce, D.D.: A new construction of compact 8-manifolds with holonomy Spin(7). J. Differ. Geom. 53(1), 89–130. Zbl1040.53062 (1999)
  13. Lew98.
    Lewis, C.: Spin(7) instantons, Ph.D. Thesis (1998)Google Scholar
  14. McL98.
    McLean, R.C.: Deformations of calibrated submanifolds. Comm. Anal. Geom. 6(4), 705–747. Zbl0929.53027 (1998)
  15. Nak88.
    Nakajima, H.: Compactness of the moduli space of Yang–Mills connections in higher dimensions. J. Math. Soc. Jpn. 40(3), 383–392. Zbl0647.53030 (1988)
  16. Nak90.
    Nakajima, H.: Moduli spaces of anti-self-dual connections on ALE gravitational instantons. Invent. Math. 102(2), 267–303. Zbl0714.53026 (1990)
  17. PR03.
    Pacard, F., Ritoré, M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64(3), 359–423. Zbl1070.58014 (2003)
  18. Pri83.
    Price, P.: A monotonicity formula for Yang–Mills fields. Manuscr. Math. 43(2–3), 131–166. Zbl0521.58024 (1983)
  19. SW10.
    Salamon, D.A, Walpuski, T.: Notes on the octonians. arXiv:1005.2820v1 (2010)
  20. Tan12.
    Tanaka, Y.: A construction of Spin(7)-instantons. Ann. Glob. Anal. Geom. 42(4), 495–521. Zbl1258.53022 (2012)
  21. Tau82.
    Taubes, C.H.: Self-dual Yang–Mills connections on non-self-dual 4-manifolds. J. Differ. Geom. 17(1), 139–170. Zbl0484.53026 (1982)
  22. Tau83.
    Taubes, C.H.: Stability in Yang–Mills theories. Comm. Math. Phys. 91(2), 235–263. Zbl0524.58020 (1983)
  23. Tia00.
    Tian, G.: Gauge theory and calibrated geometry. I. Ann. Math. (2) 151(1), 193–268. Zbl0957.58013 (2000)
  24. Uhl82a.
    Uhlenbeck, K.K.: Connections with L p bounds on curvature. Comm. Math. Phys. 83(1), 31–42. Zbl0499.58019 (1982)
  25. Uhl82b.
    Uhlenbeck, K.K.: Removable singularities in Yang–Mills fields. Comm. Math. Phys. 83(1), 11–29. Zbl0491.58032 (1982)
  26. Wal13a.
    Walpuski, T.: Gauge theory on G2-manifolds. Ph.D. Thesis. (2013)
  27. Wal13b.
    Walpuski, T.: G2-instantons on generalised Kummer constructions. Geom. Topol. 17(4), 2345–2388. Zbl1278.53051 (2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations