Communications in Mathematical Physics

, Volume 350, Issue 3, pp 897–916 | Cite as

Solidity of Type III Bernoulli Crossed Products

  • Amine MarrakchiEmail author


We generalize a theorem of Chifan and Ioana by proving that for any, possibly type III, amenable von Neumann algebra A 0, any faithful normal state \({\varphi_0}\) and any discrete group \({\Gamma}\), the associated Bernoulli crossed product von Neumann algebra \({M=(A_0,\varphi_0)^{\overline{\otimes} \Gamma} \rtimes \Gamma}\) is solid relatively to \({\mathcal{L}(\Gamma)}\). In particular, if \({\mathcal{L}(\Gamma)}\) is solid then M is solid and if \({\Gamma}\) is non-amenable and \({A_0 \neq \mathbb{C}}\) then M is a full prime factor. This gives many new examples of solid or prime type III factors. Following Chifan and Ioana, we also obtain the first examples of solid non-amenable type III equivalence relations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AH14.
    Ando H., Haagerup U.: Ultraproducts of von Neumann algebras. J. Funct. Anal. 266(12), 6842–6913 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bou12.
    Boutonnet R.: On solid ergodicity for Gaussian actions. J. Funct. Anal. 263(4), 1040–1063 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. CI10.
    Chifanm I., Ioana A.: Ergodic subequivalence relations induced by a Bernoulli action. Geom. Funct. Anal. 20(1), 53–67 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Con74.
    Connes A.: Almost periodic states and factors of type III1. J. Funct. Anal. 16(4), 415–445 (1974)CrossRefzbMATHGoogle Scholar
  5. Con94.
    Connes, A.: Géométrie non commutative (1994)Google Scholar
  6. FM77.
    Feldman J., Moore C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras. II. Trans. Am. Math. Soc. 234(2), 325–359 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Gab10.
    Gaboriau, D.: Orbit equivalence and measured group theory. In: Proceedings of the International Congress of Mathematicians (Hyderabad, India, 2010), vol. 3, pp. 1501–1527 (2010)Google Scholar
  8. HI15.
    Houdayer, C., Isono Y.: Unique prime factorization and bicentralizer problem for a class of type III factors. arXiv:1503.01388 (2015)
  9. HI16.
    Houdayer, C., Isono, Y.: Bi-exact groups, strongly ergodic actions and group measure space type III factors with no central sequence. Commun. Math. Phys.1–25. doi: 10.1007/s00220-016-2634-7 (2016)
  10. Hou11.
    Houdayer, C.: Invariant percolation and measured theory of non-amenable groups. Séminaire Boubaki (2011)Google Scholar
  11. HU15a.
    Houdayer, C., Ueda, Y.: Asymptotic structure of free product von Neumann algebras. Math. Proc. Camb. Philos. Soc. 363, 237–267 (2015)Google Scholar
  12. HU15b.
    Houdayer, C., Ueda, Y.: Rigidity of free product von Neumann algebras. Compos. Math. (2015) (to appear)Google Scholar
  13. Ioa07.
    Ioana A.: Rigidity results for wreath product II1 factors. J. Funct. Anal. 252(2), 763–791 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. IPP08.
    Ioana A., Peterson J., Popa S.: Amalgamated free products of weakly rigid factors and calculation of their symmetry groups. Acta Math. 200(1), 85–153 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Ocn85.
    Ocneanu, A.: Actions of discrete amenable groups on von Neumann algebras. Lecture Notes in Math., vol. 1138 (1985)Google Scholar
  16. Oza04.
    Ozawa N.: Solid von Neumann algebras. Acta Math. 192(1), 111–117 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Oza06.
    Ozawa, N.: Amenable actions and applications. In: International Congress of Mathematicians, vol. 2, pp. 1563–1580 (2006)Google Scholar
  18. Pis93.
    Pisier, G.: Espace de Hilbert d’opérateurs et interpolation complexe. Comptes Rendus Acad. Sci. Paris Série I 316(1), 47–52 (1993)Google Scholar
  19. Pop83.
    Popa S.: Orthogonal pairs of ⁎-subalgebras in finite von Neumann algebras. J. Oper. Theory 9(2), 253–268 (1983)MathSciNetzbMATHGoogle Scholar
  20. Pop06a.
    Popa, S.: On a class of type II1 factors with Betti numbers invariants. Ann. Math. 163(3), 809–899 (2006)Google Scholar
  21. Pop06b.
    Popa S.: Strong rigidity of II1 factors arising from malleable actions of \({\omega}\)-rigid groups, I. Invent. Math. 165(2), 369–408 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. Pop07.
    Popa, S.: Deformation and rigidity for group actions and von Neumann algebras. In: International Congress of Mathematicians, vol. 1, pp. 445–477 (2007)Google Scholar
  23. Pop08.
    Popa S.: On the superrigidity of malleable actions with spectral gap. J. Am. Math. Soc. 21(4), 981–1000 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Tak01a.
    Takesaki M.: Operator Algebras II. Springer, New York (2001)zbMATHGoogle Scholar
  25. Tak01b.
    Takesaki M.: Operator Algebras III. Springer, New York (2001)zbMATHGoogle Scholar
  26. VV15.
    Vaes S., Verraedt P.: Classification of type III Bernoulli crossed products. Adv. Math. 281, 296–332 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.École Normale SupérieureParis Cedex 05France
  2. 2.Laboratoire de Mathématiques d’OrsayUniversité Paris-Sud, Université Paris-SaclayOrsayFrance

Personalised recommendations