Communications in Mathematical Physics

, Volume 346, Issue 2, pp 469–482 | Cite as

A Uniqueness Criterion for Unbounded Solutions to the Vlasov–Poisson System

Article

Abstract

We prove uniqueness for the Vlasov–Poisson system in two and three dimensions under the condition that the L p norms of the macroscopic density grow at most linearly with respect to p. This allows for solutions with logarithmic singularities. We provide explicit examples of initial data that fulfill the uniqueness condition and that exhibit a logarithmic blow-up. In the gravitational two-dimensional case, such states are intimately related to radially symmetric steady solutions of the system. Our method relies on the Lagrangian formulation for the solutions, exploiting the second-order structure of the corresponding ODE.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio, L., Crippa, G.: Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields. Transport equations and multi-D hyperbolic conservation laws, pp. 3–57, Lect. Notes Unione Mat. Ital., 5. Springer, Berlin (2008)Google Scholar
  2. 2.
    Arsenev A.A.: Global existence of a weak solution of Vlasov’s system of equations. U. S. S. R. Comput. Math. Math. Phys. 15, 131–143 (1975)CrossRefGoogle Scholar
  3. 3.
    Batt, J., Morrison, P., Rein, G.: Linear stability of stationary solutions of the Vlasov–Poisson system in three dimensions.. Arch. Rational Mech. Anal. 130(2), 163–182 (1995)Google Scholar
  4. 4.
    Caprino, S., Marchioro, C., Miot, E., Pulvirenti, M.: On the attractive plasma-charge model in 2-D.. Comm. Partial Differ. Equ. 37(7), 1237–1272 (2012)Google Scholar
  5. 5.
    DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dolbeault J., Fernández J., Sánchez O.: Stability for the gravitational Vlasov–Poisson system in dimension two. Comm. Partial Differ. Equ. 31(10-12), 1425–1449 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Duoandikoetxea J.: Fourier Analysis, GSM29. Amer. Math. Soc., Providence RI (2001)Google Scholar
  8. 8.
    Gasser, I., Jabin, P.E., Perthame, B.: Regularity and propagation of moments in some nonlinear Vlasov systems.. Proc. Roy. Soc. Edinburgh Sect. A 130, 1259–1273 (2000)Google Scholar
  9. 9.
    Guo Y., Rein G.: A non-variational approach to nonlinear stability in stellar dynamics applied to the King model. Comm. Math. Phys. 271(2), 489–509 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lemou M., Méhats F., Raphaël P.: Orbital stability of spherical systems. Invent Math 187(1), 145–194 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lions P.L., Perthame B.: Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105, 415–430 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Loeper G.: Uniqueness of the solution to the Vlasov–Poisson system with bounded density. J. Math. Pures Appl. (9) 86(1), 68–79 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Marchioro C., Pulvirenti M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer-Verlag, New York (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Majda A.J., Bertozzi A.L.: Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics 27. Cambridge University Press, Cambridge (2002)Google Scholar
  15. 15.
    Okabe S., Ukai T.: On classical solutions in the large in time of the two-dimensional Vlasov equation. Osaka J. Math. 15, 245–261 (1978)MathSciNetMATHGoogle Scholar
  16. 16.
    Pallard C.: Moment propagation for weak solutions to the Vlasov–Poisson system. Commun. Partial Differ. Equ 37(7), 1273–1285 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Pallard C.: Space moments of the Vlasov–Poisson system: propagation and regularity. SIAM J. Math. Anal. 46(3), 1754–1770 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pfaffelmoser K.: Global existence of the Vlasov–Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Robert R.: Unicité de la solution faible à à support compact de l’équation de Vlasov–Poisson. C. R. Acad. Sci. Paris Sér. I Math. 324(8), 873–877 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    Salort D.: Transport equations with unbounded force fields and application to the Vlasov–Poisson equation. Math. Models Methods Appl. Sci. 19(2), 199–228 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Schaeffer J.: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Commun. Partial Differ. Equ 16(8–9), 1313–1335 (1991)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Wollman S.: Global in time solution to the three-dimensional Vlasov–Poisson system. J. Math. Anal. Appl. 176(1), 76–91 (1996)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Yudovich, V.I.: Non-stationary flows of an ideal incompressible fluid. Z. Vycisl. Mat. i Mat. Fiz. 3 (1963), pp. 1032–1066 (in Russian). English translation in USSR Comput. Math. Math. Physics 3 (1963), pp. 1407–1456.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre de Mathématiques Laurent SchwartzÉcole PolytechniquePalaiseauFrance

Personalised recommendations