Communications in Mathematical Physics

, Volume 346, Issue 2, pp 397–434 | Cite as

Local Random Quantum Circuits are Approximate Polynomial-Designs

  • Fernando G. S. L. Brandão
  • Aram W. Harrow
  • Michał Horodecki
Article

Abstract

We prove that local random quantum circuits acting on n qubits composed of O(t10n2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t >  3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O(t10n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O(nk) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O(n(k-9)/11) that are given oracle access to U.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeyesinghe A., Devetak I., Hayden P., Winter A.: The mother of all protocols: restructuring quantum information’s family tree. Proc. R. Soc. A 465(2108), 2537–2563 (2009) arXiv:quant-ph/0606225 ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hayden P., Shor P.W., Leung D.W., Winter A.J.: Randomizing quantum states: constructions and applications. Commun. Math. Phys. 250, 371–391 (2004) arXiv:quant-ph/0307104 ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem. In: IEEE Conference on Computational omplexity, pp. 274–287 (2006). arXiv:quant-ph/0512085
  4. 4.
    Knill, E.: Approximation by quantum circuits (1995). arXiv:quant-ph/9508006
  5. 5.
    Tóth G., García-Ripoll J.J.: Efficient algorithm for multiqudit twirling for ensemble quantum computation. Phys. Rev. A 75, 042311 (2007) arXiv:quant-ph/0609052 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dankert C., Cleve R., Emerson J., Livine E.: Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009) arXiv:quant-ph/0606161 ADSCrossRefGoogle Scholar
  7. 7.
    Gross, D., Audenaert, K., Eisert, J.: Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys. 48, 052104 (2007). arXiv:quant-ph/0611002
  8. 8.
    Emerson, J., Livine, E., Lloyd, S.: Convergence conditions for random quantum circuits. Phys. Rev. A 72, 060302 (2005). arXiv:quant-ph/0503210
  9. 9.
    Oliveira, R., Dahlsten, O.C.O., Plenio, M.B.: Efficient generation of generic entanglement. Phys. Rev. Lett. 98, 130502 (2007). arXiv:quant-ph/0605126
  10. 10.
    Dahlsten O.C.O., Oliveira R., Plenio M.B.: The emergence of typical entanglement in two-party random processes. J. Phys. A: Math. Theor. 40(28), 8081–8108 (2007) arXiv:quant-ph/0701125 ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Harrow A., Low R.: Random quantum circuits are approximate 2-designs. Commun. Math. Phys. 291, 257–302 (2009) arXiv:0802.1919 ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Diniz I., Jonathan D.: Comment on “Random Quantum Circuits are Approximate 2-designs”. Commun. Math. Phys. 304, 281–293 (2011) arXiv:1006.4202 ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Arnaud L., Braun D.: Efficiency of producing random unitary matrices with quantum circuits. Phys. Rev. A 78, 062329 (2008) arXiv:0807.0775 ADSCrossRefGoogle Scholar
  14. 14.
    Hayden P., Preskill J.: Black holes as mirrors: quantum information in random subsystems. JHEP 0709, 120 (2007) arXiv:0708.4025 ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Žnidarič M.: Exact convergence times for generation of random bipartite entanglement. Phys. Rev. A 78, 032324 (2008) arXiv:0809.0554 ADSCrossRefGoogle Scholar
  16. 16.
    Harrow, A.W., Low, R.A.: Efficient quantum tensor product expanders and k-designs. In: Proceedings of APPROX-RANDOM, volume 5687 of LNCS, pp. 548–561. Springer (2009). arXiv:0811.2597
  17. 17.
    Roy A., Scott A.J.: Unitary designs and codes. Des. Codes Cryptogr. 53, 13–31 (2009) arXiv:0809.3813 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Brown W.G., Viola L.: Convergence rates for arbitrary statistical moments of random quantum circuits. Phys. Rev. Lett. 104, 250501 (2010). arXiv:0910.0913 ADSCrossRefGoogle Scholar
  19. 19.
    Brandao F.G.S.L., Horodecki M.: Exponential quantum speed-ups are generic. Quantum Inf. Comput. 13, 0901–0924 (2013) arXiv:1010.3654 MathSciNetGoogle Scholar
  20. 20.
    Emerson J., Weinstein Y.S., Saraceno M., Lloyd S., Cory D.G.: Pseudo-random unitary operators for quantum information processing. Science 302(5653), 2098–2100 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hallgren, S., Harrow, A.W.: Superpolynomial speedups based on almost any quantum circuit. In: ICALP, volume 5125, pp. 782–795 (2008). arXiv:0805.0007
  22. 22.
    Low R.A.: Large deviation bounds for k-designs. Proc. R. Soc. A: Math. Phys. Eng. Sci. 465(2111), 3289–3308 (2009) arXiv:0903.5236 ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Brodsky A., Hoory S.: Simple permutations mix even better. Random Struct. Algorithms 32, 274–289 (2008) arXiv:math/0411098 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kaplan E., Naor M., Reingold O.: Derandomized constructions of k-wise (almost) independent permutations. Algorithmica 55, 113–133 (2009) (ECCC TR06-002)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hastings M.B., Harrow A.W.: Classical and quantum tensor product expanders. Quantum Inf. Comput. 9(3&4), 336–360 (2009) arXiv:0804.0011 MathSciNetMATHGoogle Scholar
  26. 26.
    Low, R.A.: Pseudo-randomness and Learning in Quantum Computation. PhD thesis, University of Bristol (2010). arXiv:1006.5227
  27. 27.
    Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation, volume 47 of Graduate Studies in Mathematics. AMS (2002)Google Scholar
  28. 28.
    Bourgain, J., Gamburd, A.: A spectral gap theorem in SU(d) (2011). arXiv:1108.6264
  29. 29.
    Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput.- Aided Design Integr. Circuits Syst. 25(6), 1000–1010 (2006). arXiv:quant-ph/0406176
  30. 30.
    Kassabov M.: Symmetric groups and expanders. Electron. Res. Announc. Am. Math. Soc. 11, 47–56 (2005) arXiv:math/0503204 MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Hoory S., Magen A., Myers S., Rackoff C.: Simple permutations mix well. Theor. Comput. Sci. 348(2), 251–261 (2005)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Zatloukal, K.: Improved bounds for k-tensor product expanders (2012) (in preparation)Google Scholar
  33. 33.
    Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265(1), 95–117 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Bremner M.J., Mora C., Winter A.: Are random pure states useful for quantum computation?. Phys. Rev. Lett. 102, 190502 (2009) arXiv:00812.3001 ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Gross D., Flammia S.T., Eisert J.: Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009) arXiv:0810.4331 ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Aaronson, S.: The ten most annoying questions in quantum computing (2006) http://www.scottaaronson.com/blog/?p=112
  37. 37.
    Goldstein S., Lebowitz J.L., Tumulka R., Zanghi N.: Long-time behavior of macroscopic quantum systems: commentary accompanying the english translation of john von neumann’s 1929 article on the quantum ergodic theorem. Eur. Phys. J. 35, 173 (2010)Google Scholar
  38. 38.
    Linden N., Popescu S., Short A.J., Winter A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009) arXiv:0812.2385 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Cramer M., Eisert J.: A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states. New J. Phys. 12(5), 055020 (2010) arXiv:0911.2475 ADSCrossRefGoogle Scholar
  40. 40.
    Gogolin C., Müller M.P., Eisert J.: Absence of thermalization in nonintegrable systems. Phys. Rev. Lett. 106, 040401 (2011) arXiv:1009.2493 ADSCrossRefGoogle Scholar
  41. 41.
    Reimann P.: Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101, 190403 (2008) arXiv:0810.3092 ADSCrossRefGoogle Scholar
  42. 42.
    Vinayak, Znidaric, M.: Subsystem dynamics under random Hamiltonian evolution. J. Phys. A: Math. Theor. 45, 125204 (2012).arXiv:1107.6035. doi:10.1088/1751-8113/45/12/125204
  43. 43.
    Masanes L., Roncaglia A.J., Acin A.: The complexity of energy eigenstates as a mechanism for equilibration. Phys. Rev. E 87, 032137 (2013) arXiv:1108.0374 ADSCrossRefGoogle Scholar
  44. 44.
    Brandão F.G.S.L., Ćwikliński P., Horodecki M., Horodecki P., Korbicz J., Mozrzymas M.: Convergence to equilibrium under a random hamiltonian. Phys. Rev. E 86, 031101 (2012) arXiv:1108.2985 ADSCrossRefGoogle Scholar
  45. 45.
    Cramer M.: Thermalization under randomized local hamiltonians. New J. Phys. 14(5), 053051 (2012) arXiv:1112.5295 ADSCrossRefGoogle Scholar
  46. 46.
    von Neumann J.: Beweis des ergodensatzes und des h-theorems in der neuen mechanik. Zeitschrift für Physik 57(1–2), 30–70 (1929)ADSCrossRefMATHGoogle Scholar
  47. 47.
    Goldstein S., Lebowitz J.L., Tumulka R, Zanghì N: Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Trotzky S., Chen Y.-A., Flesch A., McCulloch I.P., Schollwöck U., Eisert J., Bloch I.: Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional bose gas. Nat. Phys. 8(4), 325–330 (2012)CrossRefGoogle Scholar
  49. 49.
    Bañuls M.C., Cirac J.I., Hastings M.B.: Strong and weak thermalization of infinite nonintegrable quantum systems. Phys. Rev. Lett. 106, 050405 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    Susskind L.: Computational complexity and black hole horizons. Fortschr. Phys. 64(1), 24–43 (2016) arXiv:1402.5674 MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Wen X.-G.: Topological orders in rigid states. Int. J. Mod. Phys. 239, 050401 (1990)MathSciNetGoogle Scholar
  52. 52.
    Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 1 (2003) arXiv:quant-ph/9707021 ADSMathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Nayak C., Simon S.H., Stern A., Freedman M., Sarma S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008) arXiv:0707.1889 ADSMathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Bravyi S., Hastings M.B., Verstraete F.: Lieb–Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006) arXiv:quant-ph/0603121 ADSCrossRefGoogle Scholar
  55. 55.
    Chen X., Gu Z.-G., Wen X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 1083 (2010) arXiv:1004.3835 Google Scholar
  56. 56.
    Hastings M.B.: Topological order at non-zero temperature. Phys. Rev. Lett. 107, 210501 (2011) arXiv:1106.6026 ADSCrossRefGoogle Scholar
  57. 57.
    Sekino Y., Susskind L.: Fast scramblers. J. High Energy Phys. 10, 065 (2008) arXiv:0808.2096 ADSCrossRefGoogle Scholar
  58. 58.
    Lashkari, N., Stanford, D., Hastings,M., Osborne, T., Hayden, P.: Towards the fast scrambling conjecture J. High Energy Phys. 2013, 22 (2013)Google Scholar
  59. 59.
    Nachtergaele B.: The spectral gap for some spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996) arXiv:cond-mat/9410110 ADSMathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Fannes M., Nachtergaele B., Werner R.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Perez-Garcia D., Verstraete F., Wolf M.M., Cirac J.I.: Matrix product state representations. Quantum Inf. Comput. 7(5&6), 401–430 (2007) arXiv:quant-ph/0608197 MathSciNetMATHGoogle Scholar
  62. 62.
    Bubley, R., Dyer, M.E.: Path coupling: a technique for proving rapid mixing in Markov chains. In: Proceedings of the 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 223–231 (1997)Google Scholar
  63. 63.
    Oliveira R.I.: On the convergence to equilibrium of Kac’s random walk on matrices. Ann. Appl. Probab. 19(3), 1200–1231 (2009) arXiv:0705.2253 MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Aharonov D., Arad I., Vazirani U., Landau Z.: The detectability lemma and its applications to quantum Hamiltonian complexity. New J. Phys. 13(11), 113043 (2011) arXiv:1011.3445 ADSCrossRefGoogle Scholar
  65. 65.
    Damgard, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pp. 449–458, Washington, DC, USA, 2005. IEEE Computer Society. arXiv:quant-ph/0508222.
  66. 66.
    Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995) arXiv:quant-ph/9503016 ADSCrossRefGoogle Scholar
  67. 67.
    Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998). http://www.math.rutgers.edu/~goodman/cuprepbook.html
  68. 68.
    Christandl, M.: The structure of bipartite quantum states: insights from group theory and cryptography. PhD thesis, University of Cambridge (2006). arXiv:quant-ph/0604183
  69. 69.
    Arnold, V.I., Krylov, A.L.: Uniform distribution of points on a sphere and some ergodic properties of solutions of linear ordinary differential equations in a complex domain. Sov. Math. Dokl. 148, 9–12 (1963)Google Scholar
  70. 70.
    Szarek T.: Feller processes on nonlocally compact spaces. Ann. Probab. 34(5), 1849–1863 (2006) arXiv:math/0512221 MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Szarek, T.: (2011) (private communication)Google Scholar
  72. 72.
    Harrow, A.W.: The church of the symmetric subspace (2013). arXiv:1308.6595
  73. 73.
    Bhatia, R.: Matrix Analysis, volume 169. Springer Science & Business Media, Berlin (1997)Google Scholar
  74. 74.
    Ambainis A., Bouda J., Winter A.: Nonmalleable encryption of quantum information. J. Math. Phys. 50(4), 042106 (2009) arXiv:0808.0353 ADSMathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp. 20–30. ACM (1998). arXiv:quant-ph/9806029
  76. 76.
    Milman, V.D., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces. Lecture notes in mathematics. Springer, Berlin (1986)Google Scholar
  77. 77.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of the 25th Annual ACM Symposium on the Theory of Computation (STOC), pp. 11–20. ACM Press, El Paso, Texas (1993)Google Scholar
  78. 78.
    Ledoux, M.: The Concentration of Measure Phenomenon. AMS Monographs, Providence (2001)Google Scholar
  79. 79.
    Kastoryano M.J., Temme K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54, 052202 (2013) arXiv:1207.3261 ADSMathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Stolz, G.: An introduction to the mathematics of anderson localization. Contemp. Math. 552 (2011). arXiv:1104.2317
  81. 81.
    Harrow, A.W.: Applications of coherent classical communication and Schur duality to quantum information theory. PhD thesis, M.I.T., Cambridge, MA (2005). arXiv:quant-ph/0512255

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fernando G. S. L. Brandão
    • 1
  • Aram W. Harrow
    • 2
  • Michał Horodecki
    • 3
  1. 1.Department of Computer ScienceUniversity College LondonLondonUK
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Institute of Theoretical Physics and Astrophysics, National Quantum Information Centre, Faculty of Mathematics, Physics and InformaticsUniversity of GdańskGdańskPoland

Personalised recommendations