Communications in Mathematical Physics

, Volume 349, Issue 3, pp 895–945 | Cite as

Lacunary Fourier Series for Compact Quantum Groups



This paper is devoted to the study of Sidon sets, \({\Lambda(p)}\)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, \({\Lambda(p)}\)-sets and lacunarities for Lp-Fourier multipliers, generalizing a previous work by Blendek and Michalic̆ek. We also prove the existence of \({\Lambda(p)}\)-sets for orthogonal systems in noncommutative Lp-spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ban99.
    Banica T.: Fusion rules for representations of compact quantum groups. Expo. Math. 17(4), 313–337 (1999)MathSciNetMATHGoogle Scholar
  2. BL76.
    Bergh, J., Löfströmm J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin-New York (1976)Google Scholar
  3. BM13.
    Blendek T., Michaliček J.: L 1-norm estimates of character sums defined by a Sidon set in the dual of a compact Kac algebra. J. Oper. Theory 70(2), 375–399 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. Boz73.
    Bożejko M.: The existence of \({\Lambda (p)}\) sets in discrete noncommutative groups. Boll. Un. Mat. Ital. (4) 8, 579–582 (1973)MathSciNetMATHGoogle Scholar
  5. Boz74.
    Bożejko M.: Sidon sets in dual objects of compact groups. Colloq. Math. 30, 137–141 (1974)MathSciNetMATHGoogle Scholar
  6. Boz75a.
    Bożejko M.: On \({\Lambda (p)}\) sets with minimal constant in discrete noncommutative groups. Proc. Am. Math. Soc. 51, 407–412 (1975)MathSciNetMATHGoogle Scholar
  7. Boz75b.
    Bożejko, M.: A remark to my paper: The existence of \({\Lambda (p)}\) sets in discrete noncommutative groups (Boll. Un. Mat. Ital. (4) 8 (1973), 579–582). Boll. Un. Mat. Ital. (4), 11(1):43, (1975)Google Scholar
  8. Boz79.
    Bożejko, M.: Lacunary sets in finite von neumann algebras. Unpublished manuscript (1979)Google Scholar
  9. Boz81.
    Bożejko M.: A new group algebra and lacunary sets in discrete noncommutative groups. Studia Math. 70(2), 165–175 (1981)MathSciNetMATHGoogle Scholar
  10. Bra12.
    Brannan M.: Quantum symmetries and strong Haagerup inequalities. Commun. Math. Phys. 311(1), 21–53 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. BT03.
    Bédos E., Tuset L.: Amenability and co-amenability for locally compact quantum groups. Int. J. Math. 14(8), 865–884 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. Cas13.
    Caspers M.: The L p-Fourier transform on locally compact quantum groups. J. Oper. Theory 69(1), 161–193 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. CM81.
    Cartwright D.I., McMullen J.R.: A structural criterion for the existence of infinite Sidon sets. Pac. J. Math. 96(2), 301–317 (1981)MathSciNetCrossRefMATHGoogle Scholar
  14. Coo10.
    Cooney T.: A Hausdorff-Young inequality for locally compact quantum groups. Int. J. Math. 21(12), 1619–1632 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. Daw10.
    Daws M.: Multipliers, self-induced and dual Banach algebras. Diss. Math. (Rozprawy Mat.) 470, 62 (2010)MathSciNetMATHGoogle Scholar
  16. Daw12.
    Daws, M.: Completely positive multipliers of quantum groups. Internat. J. Math. 23(12), 1250132, 23, (2012)Google Scholar
  17. DCFY14.
    De Commer, K., Freslon, A., Yamashita, M.: CCAP for universal discrete quantum groups. Commun. Math. Phys. 331(2), 677–701 (2014). (With an appendix by Stefaan Vaes)Google Scholar
  18. Dru70.
    Drury S.W.: Sur les ensembles de Sidon. C. R. Acad. Sci. Paris Sér. A-B 271, A162–A163 (1970)MathSciNetMATHGoogle Scholar
  19. ER00.
    Effros E.G., Ruan Z.-J.: Operator spaces, volume 23 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York (2000)Google Scholar
  20. Eym64.
    Eymard P.: L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. France 92, 181–236 (1964)MathSciNetMATHGoogle Scholar
  21. Fol95.
    Folland G.B.: A course in abstract harmonic analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  22. FT77.
    Figà-Talamanca, A.: Lacunary sets in noncommutative groups. Rend. Sem. Mat. Fis. Milano 47, 45–59 (1979), 1977Google Scholar
  23. FTR66.
    Figà -Talamanca A., Rider D.: A theorem of Littlewood and lacunary series for compact groups. Pac. J. Math. 16, 505–514 (1966)MathSciNetCrossRefMATHGoogle Scholar
  24. Har99.
    Harcharras A.: Fourier analysis, Schur multipliers on S p and non-commutative \({\Lambda(p)}\)-sets. Studia Math. 137(3), 203–260 (1999)MathSciNetMATHGoogle Scholar
  25. HJX10.
    Haagerup U., Junge M., Xu Q.: A reduction method for noncommutative L p-spaces and applications. Trans. Am. Math. Soc. 362(4), 2125–2165 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. HR70.
    Hewitt, E., Ross, K.A.: Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups. Die Grundlehren der mathematischen Wissenschaften, Band 152. Springer-Verlag, New York-Berlin (1970)Google Scholar
  27. JNR09.
    Junge M., Neufang M., Ruan Z.-J.: A representation theorem for locally compact quantum groups. Int. J. Math. 20(3), 377–400 (2009)MathSciNetCrossRefMATHGoogle Scholar
  28. Jun02.
    Junge M.: Doob’s inequality for non-commutative martingales. J. Reine Angew. Math. 549, 149–190 (2002)MathSciNetMATHGoogle Scholar
  29. Jun05.
    Junge M.: Embedding of the operator space OH and the logarithmic little Grothendieck inequality. Invent. Math. 161(2), 225–286 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. JX03.
    Junge M., Xu Q.: Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab. 31(2), 948–995 (2003)MathSciNetCrossRefMATHGoogle Scholar
  31. Kah10.
    Kahng B.-J.: Fourier transform on locally compact quantum groups. J. Oper. Theory 64(1), 69–87 (2010)MathSciNetMATHGoogle Scholar
  32. Kos84.
    Kosaki H.: Applications of the complex interpolation method to a von Neumann algebra: noncommutative L p-spaces. J. Funct. Anal. 56(1), 29–78 (1984)MathSciNetCrossRefMATHGoogle Scholar
  33. KS36.
    Kaczmarz, S., Steinhaus, H.: Theorie der Orthogonalreihen. Monografie Matematyczne. Instytut Matematyczny Polskiej Akademi Nauk, Warszawa-Lwów (1936)Google Scholar
  34. KS97.
    Klimyk A., Schmüdgen K.: Quantum groups and their representations. Texts and Monographs in Physics. Springer, Berlin (1997)CrossRefMATHGoogle Scholar
  35. Lei74.
    Leinert M.: Faltungsoperatoren auf gewissen diskreten Gruppen. Studia Math. 52, 149–158 (1974)MathSciNetMATHGoogle Scholar
  36. LS91.
    Levendorskiĭ S., Soibelman Y.: Algebras of functions on compact quantum groups, Schubert cells and quantum tori. Commun. Math. Phys. 139(1), 141–170 (1991)ADSMathSciNetCrossRefGoogle Scholar
  37. Lun09.
    Lunardi, A.: Interpolation theory. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, second edition (2009)Google Scholar
  38. Meg98.
    Megginson R.E.: An introduction to Banach space theory, volume 183 of Graduate Texts in Mathematics. Springer, New York (1998)CrossRefGoogle Scholar
  39. MP81.
    Marcus, M.B., Pisier G.: Random Fourier series with applications to harmonic analysis, vol. 101 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1981)Google Scholar
  40. MVD98.
    Maes A., Van Daele A.: Notes on compact quantum groups. Nieuw Arch. Wisk. (4) 16(1–2), 73–112 (1998)MathSciNetMATHGoogle Scholar
  41. NT13.
    Neshveyev S., Tuset L.: Compact quantum groups and their representation categories, vol. 20 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris (2013)MATHGoogle Scholar
  42. Pic73.
    Picardello M.A.: Lacunary sets in discrete noncommutative groups. Boll. Un. Mat. Ital. (4) 8, 494–508 (1973)MathSciNetMATHGoogle Scholar
  43. Pis78a.
    Pisier, G.: Ensembles de Sidon et espaces de cotype 2. In: Séminaire sur la Géométrie des Espaces de Banach (1977–1978), pages Exp. No. 14, 12. École Polytech., Palaiseau (1978)Google Scholar
  44. Pis78b.
    Pisier, G.: Sur l’espace de Banach des séries de Fourier aléatoires presque sûrement continues. In: Séminaire sur la Géométrie des Espaces de Banach (1977–1978), pp. 17–18, Exp. No. 33. École Polytech., Palaiseau (1978)Google Scholar
  45. Pis83a.
    Pisier, G.: Conditions d’entropie et caractérisations arithmétiques des ensembles de Sidon. In: Topics in modern harmonic analysis, Vol. I, II (Turin/Milan, 1982), pp. 911–944. Ist. Naz. Alta Mat. Francesco Severi, Rome (1983)Google Scholar
  46. Pis83b.
    Pisier, G.: Some applications of the metric entropy condition to harmonic analysis. In: Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981), vol. 995 of Lecture Notes in Math., pp. 123–154. Springer, Berlin (1983)Google Scholar
  47. Pis95.
    Pisier G.: Multipliers and lacunary sets in non-amenable groups. Am. J. Math. 117(2), 337–376 (1995)MathSciNetCrossRefMATHGoogle Scholar
  48. PX03.
    Pisier, G., Xu, Q.: Non-commutative L p-spaces. In: Handbook of the geometry of Banach spaces, Vol. 2, pp. 1459–1517. North-Holland, Amsterdam (2003)Google Scholar
  49. Rid72.
    Rider D.: Central lacunary sets. Monatsh. Math. 76, 328–338 (1972)MathSciNetCrossRefMATHGoogle Scholar
  50. Rid75.
    Rider D.: Randomly continuous functions and Sidon sets. Duke Math. J. 42(4), 759–764 (1975)MathSciNetCrossRefMATHGoogle Scholar
  51. Rud60.
    Rudin W.: Trigonometric series with gaps. J. Math. Mech. 9, 203–227 (1960)MathSciNetMATHGoogle Scholar
  52. RX06.
    Ricard É., Xu Q.: Khintchine type inequalities for reduced free products and applications. J. Reine Angew. Math. 599, 27–59 (2006)MathSciNetMATHGoogle Scholar
  53. Soi90.
    Soibelman Y.: Algebra of functions on a compact quantum group and its representations. Algebra i Analiz 2(1), 190–212 (1990)MathSciNetGoogle Scholar
  54. Tak02.
    Takesaki, M.: Theory of operator algebras. I, vol. 124 of Encyclopaedia of Mathematical Sciences. Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, vol. 5. Springer, Berlin (2002)Google Scholar
  55. Tak03.
    Takesaki, M.: Theory of operator algebras. II, vol. 125 of Encyclopaedia of Mathematical Sciences. Operator Algebras and Non-commutative Geometry, vol. 6. Springer, Berlin (2003)Google Scholar
  56. Ter81.
    Terp, M.: L p spaces associated with von neumann algebras. In: Notes, Report No. 3a + 3b. Københavns Universitets Matematiske Institut (1981)Google Scholar
  57. Tim08.
    Timmermann, T.: An invitation to quantum groups and duality. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2008). (From Hopf algebras to multiplicative unitaries and beyond)Google Scholar
  58. VD96.
    Van Daele A.: Discrete quantum groups. J. Algebra 180(2), 431–444 (1996)MathSciNetCrossRefMATHGoogle Scholar
  59. VD07.
    Van Daele A.: The Fourier transform in quantum group theory. In: New techniques in Hopf algebras and graded ring theory, pp. 187–196. K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels (2007)Google Scholar
  60. VDW96.
    Van Daele A., Wang S.: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996)MathSciNetCrossRefMATHGoogle Scholar
  61. Ver07.
    Vergnioux R.: The property of rapid decay for discrete quantum groups. J. Oper. Theory 57(2), 303–324 (2007)MathSciNetMATHGoogle Scholar
  62. Voi98.
    Voiculescu, D.: A strengthened asymptotic freeness result for random matrices with applications to free entropy. Int. Math. Res. Not. (1), 41–63 (1998)Google Scholar
  63. Wan95a.
    Wang S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  64. Wan95b.
    Wang S.: Tensor products and crossed products of compact quantum groups. Proc. Lond. Math. Soc. (3) 71(3), 695–720 (1995)MathSciNetCrossRefMATHGoogle Scholar
  65. Wan14.
    Wang, S.: L p-improving convolution operators on finite quantum groups. Indiana Univ. Math. J. Available at arXiv:1412.2085 (to appear)
  66. Wor87.
    Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)ADSMathSciNetCrossRefMATHGoogle Scholar
  67. Wor98.
    Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), pp. 845–884. North-Holland, Amsterdam (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité de Franche-ComtéBesançon CedexFrance
  2. 2.Institute of MathematicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations