Communications in Mathematical Physics

, Volume 346, Issue 1, pp 237–292 | Cite as

Pure Partition Functions of Multiple SLEs

  • Kalle Kytölä
  • Eveliina Peltola


Multiple Schramm–Loewner Evolutions (SLE) are conformally invariant random processes of several curves, whose construction by growth processes relies on partition functions—Möbius covariant solutions to a system of second order partial differential equations. In this article, we use a quantum group technique to construct a distinguished basis of solutions, which conjecturally correspond to the extremal points of the convex set of probability measures of multiple SLEs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BBH05.
    Bauer, M., Bernard, D., Houdayer, J.: Dipolar stochastic Loewner evolutions. J. Stat. Mech. P03001 (2005)Google Scholar
  2. BBK05.
    Bauer M., Bernard D., Kytölä K.: Multiple Schramm–Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5–6), 1125–1163 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. BPZ84.
    Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34, 763–774 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. CN07.
    Camia F., Newman C.M.: Critical percolation exploration path and SLE6: a proof of convergence. Probab. Theory Relat. Fields 139(3–4), 473–519 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. CS11.
    Cantini L., Sportiello A.: Proof of the Razumov–Stroganov conjecture. J. Combin. Theory Ser. A 118, 1549–1574 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Car88.
    Cardy, J.: Conformal Invariance and Statistical Mechanics. In: Brézin, E., Zinn-Justin, J. (eds.) Fields, Strings and Critical Phenomena (Les Houches 1988). Elsevier Science Publishers BV, Amsterdam (1988)Google Scholar
  7. Car92.
    Cardy J.: Critical percolation in finite geometries. J. Phys. A 25, L201–L206 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. CDCH+14.
    Chelkak D., Duminil-Copin H., Hongler C., Kemppainen A., Smirnov S.: Convergence of Ising interfaces to SLE. C. R. Acad. Sci. Paris Ser. I 352(2), 157–161 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. CHI15.
    Chelkak D., Hongler C., Izyurov K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181(3), 1087–1138 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. CI13.
    Chelkak D., Izyurov K.: Holomorphic spinor observables in the critical Ising model. Commun. Math. Phys. 322, 303–332 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. CS12.
    Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189, 515–580 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. DF84.
    Dotsenko V.S., Fateev V.A.: Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240, 312 (1984)ADSMathSciNetCrossRefGoogle Scholar
  13. Dub06.
    Dubédat J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123(6), 1183–1218 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Dub07.
    Dubédat J.: Commutation relations for SLE. Commun. Pure Appl. Math. 60(12), 1792–1847 (2007)CrossRefzbMATHGoogle Scholar
  15. Dub09.
    Dubédat J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22, 995–1054 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. EO05.
    Eynard B., Orantin N.: Mixed correlation functions in the 2-matrix model, and the Bethe ansatz. J. High Energy Phys. 0508, 028 (2005)ADSMathSciNetCrossRefGoogle Scholar
  17. FK15a.
    Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations, Part I. Commun. Math. Phys. 333(1), 389–434 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. FK15b.
    Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations, Part II. Commun. Math. Phys. 333(1), 435–481 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. FK15c.
    Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations, Part III. Commun. Math. Phys. 333(2), 597–667 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. FK15d.
    Flores S.M., Kleban P.: A solution space for a system of null-state partial differential equations, Part IV. Commun. Math. Phys. 333(2), 669–715 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. FSK15.
    Flores, S.M., Simmons, J.J.H., Kleban, P.: Multiple-SLE connectivity weights for rectangles, hexagons, and octagons (2015). Preprint. arXiv:1505.07756
  22. FZS15.
    Flores S.M., Ziff R.M., Simmons J.J.H.: Percolation crossing probabilities in hexagons: a numerical study. J. Phys. A: Math. Theor. 48, 025001 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. Gra07.
    Graham, K.: On multiple Schramm–Loewner evolutions. J. Stat. Mech.: Theory Exp. P03008 (2007)Google Scholar
  24. Gri99.
    Grimmett G.: Percolation. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  25. Hon10.
    Hongler, C.: Conformal invariance of Ising model correlations. Ph.D. thesis, Université de Genève (2010)Google Scholar
  26. HK13.
    Hongler C., Kytölä K.: Ising interfaces and free boundary conditions. J. Am. Math. Soc. 26, 1107–1189 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. HS13.
    Hongler C., Smirnov S.: The energy density in the 2d Ising model. Acta Math. 211, 191–225 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Izy11.
    Izyurov, K.: Holomorphic spinor observables and interfaces in the critical Ising model. Ph.D. thesis, Université de Genève (2011)Google Scholar
  29. Izy15.
    Izyurov, K.: Critical Ising interfaces in multiply-connected domains. Probab. Theory Relat. Fields (2015). doi: 10.1007/s00440-015-0685-x
  30. Izy14.
    Izyurov K.: Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities. Commun. Math. Phys. 337(1), 225–252 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. IK13.
    Izyurov K., Kytölä K.: Hadamard’s formula and couplings of SLEs with free field. Probab. Theory Relat. Fields 155, 35–69 (2013)CrossRefzbMATHGoogle Scholar
  32. JJK16.
    Jokela, N., Järvinen, M., Kytölä, K.: SLE boundary visits. Annales Henri Poincaré 17(6), 1263–1330 (2016)Google Scholar
  33. Ken00.
    Kenyon R.: Conformal invariance of domino tiling. Ann. Probab. 28, 759–795 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. KW11.
    Kenyon R.W., Wilson D.B.: Boundary partitions in trees and dimers. Trans. Am. Math. Soc. 363, 1325–1364 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. KL07.
    Kozdron, M.J., Lawler, G.F.: The configurational measure on mutually avoiding SLE paths. In: Universality and renormalization: from stochastic evolution to renormalization of quantum fields, fields institute communications. American Mathematical Society, Providence (2007)Google Scholar
  36. Kyt07.
    Kytölä K.: Virasoro module structure of local martingales of SLE variants. Rev. Math. Phys. 19(5), 455–509 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  37. KP14.
    Kytölä, K., Peltola, E.: Conformally covariant boundary correlation functions with a quantum group (2014). Preprint in arXiv:1408.1384
  38. LSW04.
    Lawler G.F., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  39. MW73.
    McCoy B.M., Wu T.T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
  40. MS12a.
    Miller J., Sheffield S.: Imaginary geometry I: interacting SLEs. Probab. Theory. Relat. Fields 164, 553–705 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  41. MS12b.
    Miller, J., Sheffield, S.: Imaginary geometry III: reversibility of \({SLE_{\kappa}}\) for \({\kappa \in (4,8)}\). Ann. Math. (2012) (to appear). Preprint. arXiv:1201.1498
  42. RS04.
    Razumov A.V., Stroganov Y.G.: Combinatorial nature of ground state vector of O(1) loop model. Theor. Math. Phys. 138, 333–337 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  43. RS05.
    Rohde S., Schramm O.: Basic properties of SLE. Ann. Math. 161(2), 883–924 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Sch00.
    Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  45. SS09.
    Schramm O., Sheffield S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202, 21–137 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  46. SS13.
    Schramm O., Sheffield S.: A contour line of the continuum Gaussian free field. Probab. Theory Relat. Fields 157, 47–80 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  47. She07.
    Sheffield S.: Gaussian free field for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  48. Sim13.
    Simmons J.J.H.: Logarithmic operator intervals in the boundary theory of critical percolation. J. Phys. A: Math. Theor. 46, 494015 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  49. Smi01.
    Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris 333, 239–244 (2001). See also arXiv:0909.4499
  50. Smi06.
    Smirnov, S.: Towards conformal invariance of 2d lattice models. In: Proceedings of the International Congress of Mathematicians, pp. 1421–1451. Madrid, Spain (2006)Google Scholar
  51. Wer14.
    Werner, W.: Topics on the two-dimensional Gaussian free field. Lecture notes, (2014)
  52. Zha04.
    Zhan, D.: Random Loewner Chains in Riemann Surfaces. Ph.D. thesis, California Institute of Technology (2004)Google Scholar
  53. Zha08a.
    Zhan D.: The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36(2), 467–529 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  54. Zha08b.
    Zhan D.: Reversibility of chordal SLE. Ann. Probab. 36, 1472–1494 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Systems AnalysisAalto UniversityEspooFinland
  2. 2.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations