Communications in Mathematical Physics

, Volume 344, Issue 3, pp 751–795 | Cite as

Robust Criterion for the Existence of Nonhyperbolic Ergodic Measures

  • Jairo Bochi
  • Christian Bonatti
  • Lorenzo J. Díaz
Article

Abstract

We give explicit C 1-open conditions that ensure that a diffeomorphism possesses a nonhyperbolic ergodic measure with positive entropy. Actually, our criterion provides the existence of a partially hyperbolic compact set with one-dimensional center and positive topological entropy on which the center Lyapunov exponent vanishes uniformly.

The conditions of the criterion are met on a C 1-dense and open subset of the set of diffeomorphisms having a robust cycle. As a corollary, there exists a C 1-open and dense subset of the set of non-Anosov robustly transitive diffeomorphisms consisting of systems with nonhyperbolic ergodic measures with positive entropy.

The criterion is based on a notion of a blender defined dynamically in terms of strict invariance of a family of discs.

Keywords

Lyapunov Exponent Periodic Point Positive Entropy Homoclinic Tangency Homoclinic Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABCDW.
    Abdenur F., Bonatti C., Crovisier S., Díaz L.J., Wen L.: Periodic points and homoclinic classes. Ergodic Theory Dynam. Syst. 27(1), 1–22 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. ACW.
    Avila, A., Crovisier, S., Wilkinson, A.: Diffeomorphisms with positive metric entropy. arXiv:1408.4252
  3. BBS.
    Baladi V., Bonatti C., Schmitt B.: Abnormal escape rates from nonuniformly hyperbolic sets. Ergodic Theory Dynam. Syst. 19(5), 1111–1125 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. BB.
    Baraviera A., Bonatti C.: Removing zero Lyapunov exponents. Ergodic Theory Dynam. Syst. 23(6), 1655–1670 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. BBD.
    Bochi J., Bonatti C., Díaz L.J.: Robust vanishing of all Lyapunov exponents for iterated function systems. Math. Z. 276(1-2), 469–503 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. B.
    Bonatti C.: Towards a global view of dynamical systems, for the C 1-topology. Ergodic Theory Dynam. Syst. 31(4), 959–993 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. BC.
    Bonatti C., Crovisier S.: Récurrence et généricité. Invent. Math. 158(1), 33–104 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. BCDG.
    Bonatti C., Crovisier S., Díaz L.J., Gourmelon N.: Internal perturbations of homoclinic classes: non-domination, cycles, and self-replication. Ergodic Theory Dynam. Syst. 33(3), 739–776 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. BD1.
    Bonatti C., Díaz L.J.: Persistent nonhyperbolic transitive diffeomorphisms. Ann. Math. 143(2), 357–396 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. BD2.
    Bonatti C., Díaz L.J.: Robust heterodimensional cycles and C 1-generic dynamics. J. Inst. Math. Jussieu 7(3), 469–525 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. BD3.
    Bonatti C., Díaz L.J.: Abundance of C 1-robust homoclinic tangencies. Trans. Am. Math. Soc. 364(10), 5111–5148 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. BDG.
    Bonatti C., Díaz L.J., Gorodetski A.: Non-hyperbolic ergodic measures with large support. Nonlinearity 23(3), 687–705 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. BDK.
    Bonatti C., Díaz L.J., Kiriki S.: Stabilization of heterodimensional cycles. Nonlinearity 25(4), 931–960 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. BDV.
    Bonatti, C., Díaz, L.J., Viana, M.: Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. Encyclopaedia of Mathematical Sciences. Mathematical Physics, III, vol. 102. Springer, Berlin (2005)Google Scholar
  15. CLR.
    Cao Y., Luzzatto S., Rios I.: Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: horseshoes with internal tangencies. Discrete Contin. Dyn. Syst. 15(1), 61–71 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. CP.
    Crovisier S., Pujals E.R.: Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms. Invent. Math. 201(2), 385–517 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. DG.
    Díaz L.J., Gorodetski A.: Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes. Ergodic Theory Dynam. Syst. 29(5), 1479–1513 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. GIKN.
    Gorodetski, A., Ilyashenko, Yu.S., Kleptsyn, V.A., Nalsky, M.B.: Nonremovability of zero Lyapunov exponents.(Russian) Funktsional. Anal. i Prilozhen. 39(1), 27–38 [translation in Funct. Anal. Appl. 39(1), 21–30 (2005)]Google Scholar
  19. GW.
    Guckenheimer J., Williams R.: Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 59–72 (1979)MathSciNetCrossRefMATHGoogle Scholar
  20. H.
    Hayashi S.: Connecting invariant manifolds and the solution of the C 1 stability and \({\Omega}\)-stability conjectures for flows. Ann. Math. 145(1), 81–137 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. KN.
    Kleptsyn, V.A., Nalsky, M. B.: Stability of the existence of nonhyperbolic measures for C 1-diffeomorphisms. Funktsional. Anal. i Prilozhen. 41(4), 30–45 (2007) [translation in Funct. Anal. Appl. 41(4), 271–283 (2007)]Google Scholar
  22. Ku.
    Kupka I.: Contribution à la théorie des champs génériques. Contrib. Differ. Equations 2, 457–484 (1963)MathSciNetMATHGoogle Scholar
  23. LOR.
    Leplaideur R., Oliveira K., Rios I.: Equilibrium states for partially hyperbolic horseshoes. Ergodic Theory Dynam. Syst. 31(1), 179–195 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. M1.
    Mañé R.: Contributions to stability conjecture. Topology 17(4), 383–396 (1978)MathSciNetCrossRefMATHGoogle Scholar
  25. M2.
    Mañé R.: An ergodic closing lemma. Ann. Math. 116(3), 503–540 (1982)MathSciNetCrossRefMATHGoogle Scholar
  26. Mo.
    Moreira C.G.: There are no C 1-stable intersections of regular Cantor sets. Acta Math. 206(2), 311–323 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. MS.
    Moreira, C.G., Silva, W.: On the geometry of horseshoes in higher dimensions. arXiv:1210.2623 (preprint).
  28. MY.
    Moreira C.G., Yoccoz J.-C.: Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. Math. 154(1), 45–96 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. N.
    Newhouse S.: Diffeomorphisms with infinitely many sinks. Topology 13, 9–18 (1974)MathSciNetCrossRefMATHGoogle Scholar
  30. P.
    Palis J.: A global view of dynamics and a conjecture on the denseness and finitude of attractors. Astérisque 261, 335–347 (2000)MathSciNetMATHGoogle Scholar
  31. Pe.
    Pesin Y.: Families of invariant manifolds for diffeomorphisms with non-zero characteristic Lyapunov exponents. Izvestiya Akademii Nauk SSSR 40, 1332–1379 (1976)MathSciNetGoogle Scholar
  32. PS.
    Pujals E.R., Sambarino M.: Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. Math. 151(3), 961–1023 (2000)MathSciNetCrossRefMATHGoogle Scholar
  33. S.
    Shub M.: Topological transitive diffeomorphisms on T 4. Lecture Notes Math. 206, 39–40 (1971)CrossRefGoogle Scholar
  34. SW.
    Shub M., Wilkinson A.: Pathological foliations and removable zero exponents. Invent. Math. 139(3), 495–508 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. Sm.
    Smale S.: Stable manifolds for differential equations and diffeomorphisms. Ann. Scuola Norm. Sup. Pisa 17, 97–116 (1963)MathSciNetMATHGoogle Scholar
  36. W.
    Walters P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, New York (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jairo Bochi
    • 1
  • Christian Bonatti
    • 2
  • Lorenzo J. Díaz
    • 3
  1. 1.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Institut de Mathématiques de BourgogneDijonFrance
  3. 3.Departamento de MatemáticaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations