Communications in Mathematical Physics

, Volume 344, Issue 3, pp 751–795 | Cite as

Robust Criterion for the Existence of Nonhyperbolic Ergodic Measures

  • Jairo Bochi
  • Christian Bonatti
  • Lorenzo J. Díaz
Article

Abstract

We give explicit C1-open conditions that ensure that a diffeomorphism possesses a nonhyperbolic ergodic measure with positive entropy. Actually, our criterion provides the existence of a partially hyperbolic compact set with one-dimensional center and positive topological entropy on which the center Lyapunov exponent vanishes uniformly.

The conditions of the criterion are met on a C1-dense and open subset of the set of diffeomorphisms having a robust cycle. As a corollary, there exists a C1-open and dense subset of the set of non-Anosov robustly transitive diffeomorphisms consisting of systems with nonhyperbolic ergodic measures with positive entropy.

The criterion is based on a notion of a blender defined dynamically in terms of strict invariance of a family of discs.

References

  1. ABCDW.
    Abdenur F., Bonatti C., Crovisier S., Díaz L.J., Wen L.: Periodic points and homoclinic classes. Ergodic Theory Dynam. Syst. 27(1), 1–22 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. ACW.
    Avila, A., Crovisier, S., Wilkinson, A.: Diffeomorphisms with positive metric entropy. arXiv:1408.4252
  3. BBS.
    Baladi V., Bonatti C., Schmitt B.: Abnormal escape rates from nonuniformly hyperbolic sets. Ergodic Theory Dynam. Syst. 19(5), 1111–1125 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. BB.
    Baraviera A., Bonatti C.: Removing zero Lyapunov exponents. Ergodic Theory Dynam. Syst. 23(6), 1655–1670 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. BBD.
    Bochi J., Bonatti C., Díaz L.J.: Robust vanishing of all Lyapunov exponents for iterated function systems. Math. Z. 276(1-2), 469–503 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. B.
    Bonatti C.: Towards a global view of dynamical systems, for the C 1-topology. Ergodic Theory Dynam. Syst. 31(4), 959–993 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. BC.
    Bonatti C., Crovisier S.: Récurrence et généricité. Invent. Math. 158(1), 33–104 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. BCDG.
    Bonatti C., Crovisier S., Díaz L.J., Gourmelon N.: Internal perturbations of homoclinic classes: non-domination, cycles, and self-replication. Ergodic Theory Dynam. Syst. 33(3), 739–776 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. BD1.
    Bonatti C., Díaz L.J.: Persistent nonhyperbolic transitive diffeomorphisms. Ann. Math. 143(2), 357–396 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. BD2.
    Bonatti C., Díaz L.J.: Robust heterodimensional cycles and C 1-generic dynamics. J. Inst. Math. Jussieu 7(3), 469–525 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. BD3.
    Bonatti C., Díaz L.J.: Abundance of C 1-robust homoclinic tangencies. Trans. Am. Math. Soc. 364(10), 5111–5148 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. BDG.
    Bonatti C., Díaz L.J., Gorodetski A.: Non-hyperbolic ergodic measures with large support. Nonlinearity 23(3), 687–705 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. BDK.
    Bonatti C., Díaz L.J., Kiriki S.: Stabilization of heterodimensional cycles. Nonlinearity 25(4), 931–960 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. BDV.
    Bonatti, C., Díaz, L.J., Viana, M.: Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. Encyclopaedia of Mathematical Sciences. Mathematical Physics, III, vol. 102. Springer, Berlin (2005)Google Scholar
  15. CLR.
    Cao Y., Luzzatto S., Rios I.: Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: horseshoes with internal tangencies. Discrete Contin. Dyn. Syst. 15(1), 61–71 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. CP.
    Crovisier S., Pujals E.R.: Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms. Invent. Math. 201(2), 385–517 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. DG.
    Díaz L.J., Gorodetski A.: Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes. Ergodic Theory Dynam. Syst. 29(5), 1479–1513 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. GIKN.
    Gorodetski, A., Ilyashenko, Yu.S., Kleptsyn, V.A., Nalsky, M.B.: Nonremovability of zero Lyapunov exponents.(Russian) Funktsional. Anal. i Prilozhen. 39(1), 27–38 [translation in Funct. Anal. Appl. 39(1), 21–30 (2005)]Google Scholar
  19. GW.
    Guckenheimer J., Williams R.: Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math. 50, 59–72 (1979)MathSciNetCrossRefMATHGoogle Scholar
  20. H.
    Hayashi S.: Connecting invariant manifolds and the solution of the C 1 stability and \({\Omega}\)-stability conjectures for flows. Ann. Math. 145(1), 81–137 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. KN.
    Kleptsyn, V.A., Nalsky, M. B.: Stability of the existence of nonhyperbolic measures for C 1-diffeomorphisms. Funktsional. Anal. i Prilozhen. 41(4), 30–45 (2007) [translation in Funct. Anal. Appl. 41(4), 271–283 (2007)]Google Scholar
  22. Ku.
    Kupka I.: Contribution à la théorie des champs génériques. Contrib. Differ. Equations 2, 457–484 (1963)MathSciNetMATHGoogle Scholar
  23. LOR.
    Leplaideur R., Oliveira K., Rios I.: Equilibrium states for partially hyperbolic horseshoes. Ergodic Theory Dynam. Syst. 31(1), 179–195 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. M1.
    Mañé R.: Contributions to stability conjecture. Topology 17(4), 383–396 (1978)MathSciNetCrossRefMATHGoogle Scholar
  25. M2.
    Mañé R.: An ergodic closing lemma. Ann. Math. 116(3), 503–540 (1982)MathSciNetCrossRefMATHGoogle Scholar
  26. Mo.
    Moreira C.G.: There are no C 1-stable intersections of regular Cantor sets. Acta Math. 206(2), 311–323 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. MS.
    Moreira, C.G., Silva, W.: On the geometry of horseshoes in higher dimensions. arXiv:1210.2623 (preprint).
  28. MY.
    Moreira C.G., Yoccoz J.-C.: Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. Math. 154(1), 45–96 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. N.
    Newhouse S.: Diffeomorphisms with infinitely many sinks. Topology 13, 9–18 (1974)MathSciNetCrossRefMATHGoogle Scholar
  30. P.
    Palis J.: A global view of dynamics and a conjecture on the denseness and finitude of attractors. Astérisque 261, 335–347 (2000)MathSciNetMATHGoogle Scholar
  31. Pe.
    Pesin Y.: Families of invariant manifolds for diffeomorphisms with non-zero characteristic Lyapunov exponents. Izvestiya Akademii Nauk SSSR 40, 1332–1379 (1976)MathSciNetGoogle Scholar
  32. PS.
    Pujals E.R., Sambarino M.: Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. Math. 151(3), 961–1023 (2000)MathSciNetCrossRefMATHGoogle Scholar
  33. S.
    Shub M.: Topological transitive diffeomorphisms on T 4. Lecture Notes Math. 206, 39–40 (1971)CrossRefGoogle Scholar
  34. SW.
    Shub M., Wilkinson A.: Pathological foliations and removable zero exponents. Invent. Math. 139(3), 495–508 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. Sm.
    Smale S.: Stable manifolds for differential equations and diffeomorphisms. Ann. Scuola Norm. Sup. Pisa 17, 97–116 (1963)MathSciNetMATHGoogle Scholar
  36. W.
    Walters P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, New York (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jairo Bochi
    • 1
  • Christian Bonatti
    • 2
  • Lorenzo J. Díaz
    • 3
  1. 1.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Institut de Mathématiques de BourgogneDijonFrance
  3. 3.Departamento de MatemáticaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations