Communications in Mathematical Physics

, Volume 345, Issue 2, pp 675–701 | Cite as

T-Duality Simplifies Bulk-Boundary Correspondence

  • Varghese MathaiEmail author
  • Guo Chuan Thiang


Recently, we introduced T-duality in the study of topological insulators. In this paper, we study the bulk-boundary correspondence for three phenomena in condensed matter physics, namely, the quantum Hall effect, the Chern insulator, and time reversal invariant topological insulators. In all of these cases, we show that T-duality trivializes the bulk-boundary correspondence.


Line Bundle Topological Insulator Quantum Hall Effect Chern Number Cyclic Cohomology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avron J.E., Pnueli A.: Landau Hamiltonians on symmetric spaces. In: Albeverio, S., Fenstad, J.E., Holden, H., Lindstrøm, T. (eds.) Ideas and Methods in Quantum and Statistical Physics, vol. 2, pp. 96–117. Cambridge University Press, Cambridge (1992)Google Scholar
  2. 2.
    Avila J.C., Schulz-Baldes H., Villegas-Blas C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16(2), 137–170 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baum P., Karoubi M.: On the Baum–Connes conjecture in the real case. Q. J. Math. 55(3), 231–235 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baum P., Connes A., Higson N.: Classifying space for proper actions and K-theory of group C*-algebras. Contemp. Math. 167, 240–291 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bellissard J., Contensou E., Legrand A.: K-théorie des quasi-cristaux, image par la trace: le cas du réseau octogonal. C. R. Acad. Sci. Sr. I Math. 326(2), 197–200 (1998)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bellissard J., van Elst A., Schulz-Baldes H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benameur M.-T., Oyono-Oyono H.: Index theory for quasi-crystals I. Computation of the gap-label group. J. Funct. Anal. 252(1), 137–170 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benameur, M.-T., Mathai, V.: Gap-labelling conjecture with non-zero magnetic field. arXiv:1508.01064
  9. 9.
    Bernevig B.A., Hughes T.L., Zhang S.-C.: Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314(5806), 1757–1761 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Blackadar B.: K-theory for Operator Algebras. Math. Sci. Res. Inst. Publ., vol. 5. Cambridge University Press, Cambridge (1998)Google Scholar
  11. 11.
    Bourne C., Carey A.L., Rennie A.: The bulk-edge correspondence for the quantum hall effect in Kasparov theory. Lett. Math. Phys. 105(9), 1253–1273 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bouwknegt P., Evslin J., Mathai V.: T-duality: topology change from H-flux. Commun. Math. Phys 249(2), 383–415 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bouwknegt P., Evslin J., Mathai V.: On the topology and flux of T-dual manifolds. Phys. Rev. Lett. 92, 181601 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carey A., Hannabuss K., Mathai V., McCann P.: Quantum Hall effect on the hyperbolic plane. Commun. Math. Phys. 190(3), 629–673 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chang C.-Z. et al.: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340(6129), 167–170 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Connes A.: An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of \({\mathbb{R}}\). Adv. Math. 39(1), 31–55 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Connes A.: Non-commutative differential geometry. Publ. Math. Inst. Hautes Étude Sci. 62(1), 41–144 (1985)CrossRefzbMATHGoogle Scholar
  18. 18.
    Connes A.: Noncommutative Geometry. Academic Press, San Diego (1994)zbMATHGoogle Scholar
  19. 19.
    de Nittis G., Gomi K.: Classification of “Quaternionic” Bloch-bundles: topological insulators of type AII. Commun. Math. Phys. 339(1), 1–55 (2015)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Dupont J.L.: Symplectic bundles and KR-theory. Math. Scand. 24, 27–30 (1969)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Elbau G.M., Graf P.: Equality of bulk and edge Hall conductance revisited. Commun. Math. Phys. 229(3), 415–432 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Essin A.M., Moore J.E., Vanderbilt D.: Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Freed D.S., Moore G.W.: Twisted equivariant matter. Ann. H. Poincaré 14(8), 1927–2023 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fu L., Kane C.L.: Time reversal polarization and a \({\mathbb{Z}_2}\) adiabatic spin pump. Phys. Rev. B 74(19), 195312 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98(10), 106803 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Furuta, M., Kametani, Y., Matsue, H., Minami, N.: Stable-homotopy Seiberg-Witten invariants and Pin bordisms. UTMS Preprint Series 2000, UTMS 2000-46 (2000)Google Scholar
  27. 27.
    Graf G.M., Porta M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3), 851–895 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Green P.: The local structure of twisted covariance algebras. Acta Math. 140(1), 191–250 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Haldane F.D.M.: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61(18), 2015 (1988)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Hannabuss, K.C., Mathai, V., Thiang, G.C.: T-duality trivializes bulk-boundary correspondence: the parametrised case. arXiv:1510.04785
  31. 31.
    Hannabuss, K.C., Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence: the general case. arXiv:1603.00116
  32. 32.
    Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  33. 33.
    Hatsugai Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71(22), 3697 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Hori K.: D-branes, T-duality, and index theory. Adv. Theor. Math. Phys. 3(2), 281–342 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hsieh D., Qian D., Wray L., Xia Y., Hor Y.S., Cava R.J., Hasan M.Z.: A topological Dirac insulator in a quantum spin Hall phase. Nature 452(7190), 970–974 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Jotzu M., Messer G., Desbuquois R., Lebrat M., Uehlinger T., Greif D., Esslinger T.: Experimental realization of the topological Haldane model with ultracold fermions. Nature 515(7526), 237–240 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Kane C.L., Mele E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95(22), 226801 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Kane C.L., Mele E.J.: \({\mathbb{Z}_2}\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95(14), 146802 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Kotani M., Schulz-Baldes H., Villegas-Blas C.: Quantization of interface currents. J. Math. Phys. 55(12), 121901 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kellendonk, J., Richard, S. Topological boundary maps in physics. In: Boca, F.-P., Purice, R., Strătilă, Ş (eds.) Perspectives in Operator Algebras and Mathematical Physics (Bucharest 2005), pp. 105–121, Theta Ser. Adv. Math. Theta, Bucharest (2008)Google Scholar
  41. 41.
    Kellendonk J., Richter T., Schulz-Baldes H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14(1), 87–119 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Kellendonk J., Schulz-Baldes H.: Quantization of edge currents for continuous magnetic operators. J. Funct. Anal. 209(2), 388–413 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Kellendonk J., Schulz-Baldes H.: Boundary maps for C*-crossed products with an application to the quantum Hall effect. Commun. Math. Phys. 249(3), 611–637 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    König M., Wiedmann S., Brüne C., Roth A., Buhmann H., Molenkamp L.W., Qi X.-L., Zhang S.-C.: Quantum spin Hall insulator state in HgTe quantum wells. Science 318(5851), 766–770 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Kitaev, A.: Periodic table for topological insulators and superconductors. In: AIP Conf. Proc., vol. 1134, no. 1, pp. 22–30 (2009)Google Scholar
  46. 46.
    Loring T.A.: K-theory and pseudospectra for topological insulators. Ann. Phys. 356, 383–416 (2015)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Luke G., Mishchenko A.S.: Vector Bundles and Their Applications. Kluwer, Boston (1998)CrossRefzbMATHGoogle Scholar
  48. 48.
    Marcolli M., Mathai V.: Twisted index theory on good orbifolds. II. Fractional quantum numbers. Commun. Math. Phys. 217(1), 55–87 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Mathai V.: K-theory of twisted group C*-algebras and positive scalar curvature. Contemp. Math. 231, 203–225 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Mathai V., Rosenberg J.: T-duality for torus bundles with H-fluxes via noncommutative topology. Commun. Math. Phys. 253(3), 705–721 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Mathai V., Rosenberg J.: T-duality for torus bundles with H-fluxes via noncommutative topology, II; the high-dimensional case and the T-duality group. Adv. Theor. Math. Phys. 10(1), 123–158 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Mathai V., Thiang G.C.: T-duality and topological insulators. J. Phys. A Math. Theor. (Fast Track Communications) 48(42), 42FT02 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Mathai, V., Thiang, G.C.: T-duality trivializes bulk-boundary correspondence: some higher dimensional cases. arXiv:1506.04492
  54. 54.
    Nest R.: Cyclic cohomology of crossed products with \({\mathbb{Z}}\). J. Funct. Anal. 80(2), 235–283 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Nistor V.: Higher index theorems and the boundary map in cyclic cohomology. Doc. Math. 2, 263–295 (1997)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Packer J., Raeburn I.: Twisted crossed products of C*-algebras. Math. Proc. Camb. Philos. Soc. 106(2), 293–311 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Pimsner M., Voiculescu D.: Exact sequences for K-groups and EXT-groups of certain cross-product C*-algebras. J. Oper. Theory 4, 93–118 (1980)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Prodan E.: Virtual topological insulators with real quantized physics. Phys. Rev. B 91(24), 245104 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    Prodan E.: Robustness of the spin-Chern number. Phys. Rev. B 80(12), 125327 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    Putnam I.F.: The C*-algebras associated with minimal homeomorphisms of the Cantor set. Pac. J. Math. 136(2), 329–353 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Qi X.-L., Hughes T.L., Zhang S.-C.: Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78(19), 195424 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    Reed M., Simon B.: Methods of Mathematical Physics, vol. 4, Analysis of Operators. Academic Press, New York (1978)zbMATHGoogle Scholar
  63. 63.
    Rieffel M.A.: C*-algebras associated with irrational rotations. Pac. J. Math. 93(2), 415–429 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Rieffel, M.A.: Applications of strong Morita equivalence to transformation group C*-algebras. In: Kadison, R.V. (ed.) Operator algebras and applications, Part I (Kingston, Ontario, 1980), pp. 299–310. Proc. Sympos. Pure Math., vol. 38. Amer. Math. Soc., Providence (1982)Google Scholar
  65. 65.
    Rosenberg J.: Real Baum–Connes assembly and T-duality for torus orientifolds. J. Geom. Phys. 89, 24–31 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Rosenberg J.: C*-algebras, positive scalar curvature, and the Novikov conjecture. Publ. Math. Inst. Hautes Étude Sci. 58(1), 197–212 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Schröder H.: K-theory for real C*-algebras and applications. Pitman Res. Notes Math. Ser., vol. 290. Longman, Harlow (1993)Google Scholar
  68. 68.
    Sheng D.N., Weng Z.Y., Sheng L., Haldane F.D.M.: Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97(3), 036808 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    Sticlet D., Piéchon F., Fuchs J.-N., Kalugin P., Simon P.: Geometrical engineering of a two-band Chern insulator in two dimensions with arbitrary topological index. Phys. Rev. B 85(16), 165456 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. H. Poincaré 17(4), 757–794 (2016)Google Scholar
  71. 71.
    Thiang G.C.: Topological phases: homotopy, isomorphism and K-theory. Int. J. Geom. Methods Mod. Phys. 12(9), 1550098 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Williams, D.P.: Crossed products of C*-algebras. Math. Surveys Monogr., vol. 134. Amer. Math. Soc., Providence (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations