Communications in Mathematical Physics

, Volume 346, Issue 3, pp 907–943 | Cite as

On Blowup in Supercritical Wave Equations

Article

Abstract

We study the blowup behavior for the focusing energy-supercritical semilinear wave equation in 3 space dimensions without symmetry assumptions on the data. We prove the stability in \({H^2\times H^1}\) of the ODE blowup profile.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonini C., Merle F.: Optimal bounds on positive blow-up solutions for a semilinear wave equation. Int. Math. Res. Not. 21, 1141–1167 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bizoń P., Chmaj T., Tabor Z.: On blowup for semilinear wave equations with a focusing nonlinearity. Nonlinearity 17(6), 2187–2201 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bulut A.: Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation. J. Funct. Anal. 263(6), 1609–1660 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bulut A.: The radial defocusing energy-supercritical cubic nonlinear wave equation in \({\mathbb{R}^{1+5}}\). Nonlinearity 27(8), 1859–1877 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Caffarelli L.A., Friedman A.: The blow-up boundary for nonlinear wave equations. Trans. Am. Math. Soc. 297(1), 223–241 (1986)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Collot, C.: Type II blow up for the energy supercritical wave equation (2014). arXiv:1407.4525 (preprint)
  7. 7.
    Dodson, B., Lawrie, A.: Scattering for radial, semi-linear, super-critical wave equations with bounded critical norm (2014). arXiv:1407.8199 (preprint)
  8. 8.
    Donninger R.: On stable self-similar blowup for equivariant wave maps. Comm. Pure Appl. Math. 64(8), 1095–1147 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Donninger R.: Stable self-similar blowup in energy supercritical Yang-Mills theory. Math. Z. 278(3-4), 1005–1032 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Donninger R., Huang M., Krieger J., Schlag W.: Exotic blowup solutions for the u 5 focusing wave equation in \({\mathbb{R}^3}\). Michigan Math. J. 63(3), 451–501 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Donninger R., Krieger J.: Nonscattering solutions and blowup at infinity for the critical wave equation. Math. Ann. 357(1), 89–163 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Donninger R., Schörkhuber B.: Stable self-similar blow up for energy subcritical wave equations. Dyn. Partial Differ. Equ. 9(1), 63–87 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Donninger R., Schörkhuber B.: Stable blow up dynamics for energy supercritical wave equations. Trans. Am. Math. Soc. 366(4), 2167–2189 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Donninger R., Schörkhuber B., Aichelburg P.C.: On stable self-similar blow up for equivariant wave maps: the linearized problem. Ann. Henri Poincaré 13(1), 103–144 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Donninger R., Zenginoğlu A.: Nondispersive decay for the cubic wave equation. Anal. PDE 7(2), 461–495 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Duyckaerts T., Kenig C., Merle F.: Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation. J. Eur. Math. Soc. 13(3), 533–599 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy-critical wave equation (2012). arXiv:1204.0031 (preprint)
  18. 18.
    Duyckaerts T., Kenig C., Merle F.: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. 22(3), 639–698 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Duyckaerts T., Kenig C., Merle F.: Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math. Soc. 14(5), 1389–1454 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Duyckaerts T., Kenig C., Merle F.: Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and schrödinger equations. Commun. Pur. Appl. Anal. 14(4), 1275–1326 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Duyckaerts, T., Kenig C., Merle, F.: Scattering for radial, bounded solutions of focusing supercritical wave equations. Int. Math. Res. Not. IMRN (1), 224–258 (2014)Google Scholar
  22. 22.
    Duyckaerts, T., Kenig, C., Merle, F.: Solutions of the focusing nonradial critical wave equation with the compactness property (2014). arXiv:1402.0365 (preprints)
  23. 23.
    Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP, 67 (2008) (pages Art ID rpn002)Google Scholar
  24. 24.
    Engel, K.J., Nagel, R.: One-parameter semigroups for linear evolution equations, vol. 194 of Graduate Texts in Mathematics. Springer, New York (2000) (With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt)Google Scholar
  25. 25.
    Hamza, M.A., Zaag, H.: Blow-up results for semilinear wave equations in the super-conformal case (2013). arXiv:1301.0473 (preprint)
  26. 26.
    Hillairet M., Raphaël P.: Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation. Anal. PDE 5(4), 777–829 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995) (reprint of the 1980 edition)Google Scholar
  28. 28.
    Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kenig C.E., Merle F.: Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications. Am. J. Math. 133(4), 1029–1065 (2011)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kenig C.E., Merle F.: Radial solutions to energy supercritical wave equations in odd dimensions. Discrete Contin. Dyn. Syst. 31(4), 1365–1381 (2011)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Killip R., Stovall B., Visan M.: Blowup behaviour for the nonlinear Klein-Gordon equation. Math. Ann. 358(1-2), 289–350 (2014)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Killip R., Visan M.: The defocusing energy-supercritical nonlinear wave equation in three space dimensions. Trans. Am. Math. Soc. 363(7), 3893–3934 (2011)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Killip R., Visan M.: The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions. Proc. Am. Math. Soc. 139(5), 1805–1817 (2011)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Krieger J., Schlag W.: On the focusing critical semi-linear wave equation. Am. J. Math. 129(3), 843–913 (2007)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Krieger J., Nakanishi K., Schlag W.: Global dynamics away from the ground state for the energy-critical nonlinear wave equation. Am. J. Math. 135(4), 935–965 (2013)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Krieger J., Nakanishi K., Schlag W.: Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete Contin. Dyn. Syst. 33(6), 2423–2450 (2013)MathSciNetMATHGoogle Scholar
  37. 37.
    Krieger J., Nakanishi K., Schlag W.: Threshold phenomenon for the quintic wave equation in three dimensions. Comm. Math. Phys. 327(1), 309–332 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Krieger J., Schlag W.: Full range of blow up exponents for the quintic wave equation in three dimensions. J. Math. Pures Appl. 101(6), 873–900 (2014)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Krieger, J., Schlag, W.: Large global solutions for energy supercritical nonlinear wave equations on \({\mathbb{R}^{3+1}}\) (2014). arXiv:1403.2913 (preprint)
  40. 40.
    Krieger J., Schlag W., Tataru D.: Slow blow-up solutions for the \({H^1(\mathbb{R}^3)}\) critical focusing semilinear wave equation. Duke Math. J. 147(1), 1–53 (2009)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Krieger J., Wong W.: On type I blow-up formation for the critical NLW. Comm. Partial Differ. Equations 39(9), 1718–1728 (2014)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Lindblad H., Sogge C.D.: On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130(2), 357–426 (1995)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Merle, F., Raphaël, P., Rodnianski, I.: Type II blow up for the energy supercritical NLS (2014). arXiv:1407.1415 (preprint)
  44. 44.
    Merle F., Zaag H.: Determination of the blow-up rate for the semilinear wave equation. Am. J. Math. 125(5), 1147–1164 (2003)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Merle F., Zaag H.: Determination of the blow-up rate for a critical semilinear wave equation. Math. Ann. 331(2), 395–416 (2005)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Merle F., Zaag H.: Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal. 253(1), 43–121 (2007)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Merle F., Zaag H.: Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation. Comm. Math. Phys. 282(1), 55–86 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Merle F., Zaag H.: Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension. Am. J. Math. 134(3), 581–648 (2012)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Merle F., Zaag H.: Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation. Duke Math. J. 161(15), 2837–2908 (2012)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Merle F., Zaag H.: Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions. Trans. Am. Math. Soc. 368, 27–87 (2016)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Merle F., Zaag H.: On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Commun. Math. Phys. 333(3), 1529–1562 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST handbook of mathematical functions. With 1 CD-ROM (Windows, Macintosh and UNIX). US Department of Commerce National Institute of Standards and Technology, Washington, DC (2010)Google Scholar
  53. 53.
    Sogge C.D.: Lectures on non-linear wave equations, 2nd edn. International Press, Boston (2008)MATHGoogle Scholar
  54. 54.
    Tao, T.: Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC. Local and global analysis. American Mathematical Society, Providence (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Mathematisches InstitutRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.Fakultät für MathematikUniversität WienViennaAustria

Personalised recommendations