Advertisement

Communications in Mathematical Physics

, Volume 342, Issue 3, pp 771–801 | Cite as

An Invariant of Topologically Ordered States Under Local Unitary Transformations

  • Jeongwan HaahEmail author
Article

Abstract

For an anyon model in two spatial dimensions described by a modular tensor category, the topological S-matrix encodes the mutual braiding statistics, the quantum dimensions, and the fusion rules of anyons. It is nontrivial whether one can compute the S-matrix from a single ground state wave function. Here, we define a class of Hamiltonians consisting of local commuting projectors and an associated matrix that is invariant under local unitary transformations. We argue that the invariant is equivalent to the topological S-matrix. The definition does not require degeneracy of the ground state. We prove that the invariant depends on the state only, in the sense that it can be computed by any Hamiltonian in the class of which the state is a ground state. As a corollary, we prove that any local quantum circuit that connects two ground states of quantum double models (discrete gauge theories) with non-isomorphic abelian groups must have depth that is at least linear in the system’s diameter. As a tool for the proof, a manifestly Hamiltonian-independent notion of locally invisible operators is introduced. This gives a sufficient condition for a many-body state not to be generated from a product state by any small depth quantum circuit; this is a many-body entanglement witness.

Keywords

Entanglement Entropy String Operator Particle Type Reduce Density Matrix Quantum Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hastings M.B., Wen X.-G.: Quasi-adiabatic continuation of quantum states: The stability of topological ground state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005) arXiv:cond-mat/0503554 CrossRefADSGoogle Scholar
  2. 2.
    Osborne T.J.: Simulating adiabatic evolution of gapped spin systems. Phys. Rev. A 75, 032321 (2007)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Kitaev A., Preskill J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006) arXiv:hep-th/0510092 CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Levin M., Wen X.-G.: Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Zhang Y., Grover T., Turner A., Oshikawa M., Vishwanath A.: Quasiparticle statistics and braiding from ground-state entanglement. Phys. Rev. B 85, 235151 (2012) arXiv:1111.2342 CrossRefADSGoogle Scholar
  6. 6.
    Levin M.A., Wen X.-G.: String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005) arXiv:cond-mat/0404617 CrossRefADSGoogle Scholar
  7. 7.
    Flammia S.T., Hamma A., Hughes T.L., Wen X.-G.: Topological entanglement R ényi entropy and reduced density matrix structure. Phys. Rev. Lett. 103, 261601 (2009)CrossRefADSGoogle Scholar
  8. 8.
    Depenbrock S., McCulloch I.P., Schollwöck U.: Nature of the spin-liquid ground state of the S = 1/2 Heisenberg model on the kagome lattice. Phys. Rev. Lett. 109, 067201 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Jiang H.-C., Wang Z., Balents L.: Identifying topological order by entanglement entropy. Nat. Phys. 8, 902–905 (2012) arXiv:1205.4289 CrossRefGoogle Scholar
  10. 10.
    Kim I.H.: Perturbative analysis of topological entanglement entropy from conditional independence. Phys. Rev. B 86, 245116 (2012)CrossRefADSGoogle Scholar
  11. 11.
    Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. Math. 162, 581 (2005) arXiv:math/0203060 CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006) arXiv:cond-mat/0506438 CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Eisert J., Osborne T.J.: General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    König R., Pastawski F.: Generating topological order: no speedup by dissipation. Phys. Rev. B 90, 045101 (2014) arXiv:1310.1037 CrossRefADSGoogle Scholar
  16. 16.
    Bravyi S., Hastings M., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010) arXiv:1001.0344 CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003) arXiv:quant-ph/9707021 CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Bakalov, B., Kirillov Jr., A.: Lectures on tensor categories and modular functors, University Lecture Series, vol. 21. American Mathematical Society, Providence (2001)Google Scholar
  19. 19.
    Wick G.C., Wightman A.S., Wigner E.P.: The intrinsic parity of elementary particles. Phys. Rev. 88, 101–105 (1952)CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Preskill, J.: Topological quantum computation, Lecture notes for Physics 219, Caltech (2004). http://www.theory.caltech.edu/~preskill/ph219/topological
  21. 21.
    Bombin H., Martin-Delgado M.A.: A family of non-abelian Kitaev models on a lattice: topological confinement and condensation. Phys. Rev. B 78, 115421 (2008) arXiv:0712.0190 CrossRefADSGoogle Scholar
  22. 22.
    Bravyi, S.B., Kitaev, A.Y.: Quantum codes on a lattice with boundary (1998). arXiv:quant-ph/9811052
  23. 23.
    Kitaev A., Kong L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313, 351–373 (2011) arXiv:1104.5047 CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Bravyi S., Hastings M.B.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307, 609–627 (2011) arXiv:1001.4363 CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Michalakis S., Zwolak J.: Stability of frustration-free hamiltonians. Commun. Math. Phys. 322, 277–302 (2013) arXiv:1109.1588 CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Verlinde E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360–376 (1988)CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Fiedler L., Naaijkens P.: Haag duality for kitaev’s quantum double model for abelian groups. Rev. Math. Phys. 27, 1550021 (2015)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Naidu D.: Categorical morita equivalence for group-theoretical categories. Commun. Algebra 35, 3544–3565 (2007) arXiv:math/0605530 CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Haah J.: Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83, 042330 (2011) arXiv:1101.1962 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations