Communications in Mathematical Physics

, Volume 341, Issue 3, pp 885–909 | Cite as

Almost One Bit Violation for the Additivity of the Minimum Output Entropy

  • Serban T. Belinschi
  • Benoît Collins
  • Ion Nechita


In a previous paper, we proved that, in the appropriate asymptotic regime, the limit of the collection of possible eigenvalues of output states of a random quantum channel is a deterministic, compact set K k,t . We also showed that the set K k,t is obtained, up to an intersection, as the unit ball of the dual of a free compression norm. In this paper, we identify the maximum of \({\ell^p}\) norms on the set K k,t and prove that the maximum is attained on a vector of shape (a, b, . . . , b) where ab. In particular, we compute the precise limit value of the minimum output entropy of a single random quantum channel. As a corollary, we show that for any \({\varepsilon > 0}\), it is possible to obtain a violation for the additivity of the minimum output entropy for an output dimension as low as 183, and that for appropriate choice of parameters, the violation can be as large as \({\log 2 -\varepsilon}\). Conversely, our result implies that, with probability one in the limit, one does not obtain a violation of additivity using conjugate random quantum channels and the Bell state, in dimension 182 and less.


Entropy Convex Body Quantum Channel Bell State Quantum Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubrun G., Szarek S., Werner E.: Hastings’s additivity counterexample via Dvoretzky’s theorem. Commun. Math. Phys. 305(1), 85–97 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bauschke H.H., Combettes P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer Science+Business Media, LLC, New York (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Belinschi S.T., Bercovici H.: Atoms and regularity for measures in a partially defined free convolution semigroup. Math. Z. 248, 665–674 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Belinschi, S.T., Bercovici, H.: Partially defined semigroups relative to multiplicative free convolution. Int. Math. Res. Not. 2, 65–101 (2005)Google Scholar
  5. 5.
    Belinschi S.T., Collins B., Nechita I.: Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product. Inventiones Mathematicae 190(3), 647–697 (2012)CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Biane P.: Processes with free increments. Math. Z. 227(1), 143–174 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Brandao F., Horodecki M.S.L.: On Hastings’s counterexamples to the minimum output entropy additivity conjecture. Open Syst. Inf. Dyn. 17(01), 31–52 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Collins B., Fukuda M., Zhong P.: Estimates for compression norms and additivity violation in quantum information. Int. J. Math. 26, 1550002 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Collins B., Fukuda M., Nechita I.: Towards a state minimizing the output entropy of a tensor product of random quantum channels. J. Math. Phys. 53, 032203 (2012)CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Collins B., Fukuda M., Nechita I.: Low entropy output states for products of random unitary channels. Random Matrices: Theory Appl. 02, 1250018 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Collins B., Nechita I.: Random quantum channels I: Graphical calculus and the Bell state phenomenon. Commun. Math. Phys. 297(2), 345–370 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Collins B., Nechita I.: Random quantum channels II: entanglement of random subspaces, Rényi entropy estimates and additivity problems. Adv. Math. 226, 1181–1201 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Collins B., Nechita I.: Gaussianization and eigenvalue statistics for Random quantum channels (III). Ann. Appl. Probab. 21(3), 1136–1179 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Collins, B., Nechita, I.: Eigenvalue and entropy statistics for products of conjugate random quantum channels. Entropy 12(6), 1612–1631Google Scholar
  15. 15.
    Cubitt T., Harrow A.W., Leung D., Montanero A., Winter A.: Counterexamples to additivity of minimum output p-Rényi entropy for p close to 0. Commun. Math. Phys. 284, 281290 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Fukuda, M.: Revisiting additivity violation of quantum channels. Commun. Math. Phys. (2014). doi: 10.1007/s00220-014-2101-2
  17. 17.
    Fukuda M., King C.: Entanglement of random subspaces via the Hastings bound. J. Math. Phys. 51, 042201 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Fukuda M., King C., Moser D.: Comments on Hastings’ additivity counterexamples. Commun. Math. Phys. 296(1), 111 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Fukuda M., Nechita I.: Asymptotically well-behaved input states do not violate additivity for conjugate pairs of random quantum channels. Commun. Math. Phys. 328(3), 995–1021 (2014)CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Grudka A., Horodecki M., Pankowski L.: Constructive counterexamples to the additivity of the minimum output Rényi entropy of quantum channels for all p > 2. J. Phys. A: Math. Theor. 43(42), 425304 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Hayden, P.: The maximal p-norm multiplicativity conjecture is false. arXiv:0707.3291
  22. 22.
    Hayden P., Winter A.: Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1. Commun. Math. Phys. 284(1), 263–280 (2008)CrossRefADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255 (2009)CrossRefGoogle Scholar
  24. 24.
    Holevo A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Transm. 9, 177183 (1973)MathSciNetGoogle Scholar
  25. 25.
    Holevo A.S., Werner R.F.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43, 4353–4357 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    King C., Ruskai M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192–209 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  28. 28.
    Nica A., Speicher R.: On the multiplication of free N-tuples of non-commutative random variables. Am. J. Math. 118(4), 799–837 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Nica A., Speicher R.: Lectures on the Combinatorics of Free Probability. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  30. 30.
    Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)Google Scholar
  31. 31.
    Schumacher B., Westmoreland D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)CrossRefADSGoogle Scholar
  32. 32.
    Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379423 (1948)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Shor P.W.: Equivalence of additivity question in quantum information theory. Commun. Math. Phys. 246, 453–472 (2004)CrossRefADSMathSciNetzbMATHGoogle Scholar
  34. 34.
  35. 35.
    Voiculescu D.V., Dykema K.J., Nica A.: Free Random Variables. AMS, Providence (1992)zbMATHGoogle Scholar
  36. 36.
    Winter, A.: The maximum output p-norm of quantum channels is not multiplicative for any p >  2. arXiv:0707.0402

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Serban T. Belinschi
    • 1
    • 2
    • 3
  • Benoît Collins
    • 4
    • 5
  • Ion Nechita
    • 6
    • 7
  1. 1.CNRS-Institut de Mathématiques de ToulouseToulouse Cedex 9France
  2. 2.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada
  3. 3.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  4. 4.Department of MathematicsUniversity of OttawaOttawaCanada
  5. 5.Department of MathematicsKyoto UniversityKyotoJapan
  6. 6.Zentrum Mathematik, M5Technische Universität MünchenGarchingGermany
  7. 7.CNRS, Laboratoire de Physique ThéoriqueToulouseFrance

Personalised recommendations