Communications in Mathematical Physics

, Volume 341, Issue 3, pp 733–749 | Cite as

Quadratic-Like Dynamics of Cubic Polynomials

  • Alexander Blokh
  • Lex Oversteegen
  • Ross Ptacek
  • Vladlen Timorin


A small perturbation of a quadratic polynomial f with a non-repelling fixed point gives a polynomial g with an attracting fixed point and a Jordan curve Julia set, on which g acts like angle doubling. However, there are cubic polynomials with a non-repelling fixed point, for which no perturbation results into a polynomial with Jordan curve Julia set. Motivated by the study of the closure of the Cubic Principal Hyperbolic Domain, we describe such polynomials in terms of their quadratic-like restrictions.


Periodic Point Stable Component Parabolic Point Siegel Disk Holomorphic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BFMOT12.
    Blokh, A., Fokkink, R., Mayer, J., Oversteegen, L., Tymchatyn, E.: Fixed point theorems for plane continua with applications. Memoirs Am. Math. Soc. 224(1053) (2013)Google Scholar
  2. BOPT14.
    Blokh A., Oversteegen L., Ptacek R., Timorin V.: The main cubioid. Nonlinearity 27, 1879–1897 (2014)CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. BOPT14a.
    Blokh, A., Oversteegen, L., Ptacek, R., Timorin, V.: Complementary components to the cubic principal hyperbolic domain (preprint). arXiv:1411.2535 (2014)
  4. BrHu.
    Branner B., Hubbard J.: The iteration of cubic polynomials, Part II: patterns and parapatterns. Acta Math. 169, 229–325 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  5. BuHe01.
    Buff X., Henriksen C.: Julia sets in parameter spaces. Commun. Math. Phys. 220, 333–375 (2001)CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. DH8485.
    Douady, A., Hubbard, J.: Étude dynamique des polynômes complex I & II. Publ. Math. Orsay (1984–85)Google Scholar
  7. DH85.
    Douady A., Hubbard J.: On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. 18, 287–343 (1985)MathSciNetzbMATHGoogle Scholar
  8. Hub93.
    Hubbard, J.H.: Local connectivity of Julia sets and bifurcation loci: three theorems of Yoccoz. In: Topological Methods in Modern Mathematics, Publish or Perish (1993)Google Scholar
  9. Lev91.
    Levin G.: On Pommerenkes inequality for the eigenvalues of fixed points. Colloq. Math. 62, 167–177 (1991)MathSciNetzbMATHGoogle Scholar
  10. Lyu83.
    Lyubich M.: Some typical properties of the dynamics of rational mappings. Russian Math. Surv. 38(5), 154–155 (1983)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. Man85.
    Mañé R.: Hyperbolicity, sinks and measure in one dimensional dynamics. Commun. Math. Phys. 100, 495–524 (1985)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. Man93.
    Mañé R.: On a theorem of Fatou. Bol. Soc. Bras. Mat. 24, 1–11 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  13. MSS83.
    Mañé R., Sad, P., Sullivan, D.: On the dynamics of rational maps. Ann. Sci. École Norm. Sup. (4) 16(2), 193–217 (1983)zbMATHMathSciNetGoogle Scholar
  14. McM94.
    McMullen C.: Complex Dynamics and Renormalization. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  15. McM00.
    McMullen, C.: The Mandelbrot set is universal. In: Lei, T. (ed.) The Mandelbrot Set, Theme and Variations. London Mathematical Society Lecture Note Series, vol. 274, pp. 1–18. Cambridge University Press, CambridgeGoogle Scholar
  16. Pet93.
    Petersen C.: On the Pommerenke-Levin-Yoccoz inequality. Ergod. Theor. Dyn. Syst. 13, 785–806 (1993)zbMATHMathSciNetGoogle Scholar
  17. PeTa09.
    Petersen, C., Lei, T.: Analytic coordinates recording cubic dynamics. In: Schleicher, D., Peters, A.K.: Complex Dynamics, Families and Friends (2009)Google Scholar
  18. PiTa04.
    Pilgrim K., Lei T.: Spinning deformations of rational maps. Conform. Geom. Dyn. 8, 52–86 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  19. Pom86.
    Pommerenke Ch.: On conformal mapping and iteration of rational functions. Complex Var. Theory Appl. 5, 117–126 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  20. Zak99.
    Zakeri S.: Dynamics of cubic Siegel polynomials. Commun. Math. Phys. 206, 185–233 (1999)CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alexander Blokh
    • 1
  • Lex Oversteegen
    • 1
  • Ross Ptacek
    • 1
  • Vladlen Timorin
    • 2
    • 3
  1. 1.Department of MathematicsUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Faculty of MathematicsNational Research University Higher School of EconomicsMoscowRussia
  3. 3.Independent University of MoscowMoscowRussia

Personalised recommendations