Communications in Mathematical Physics

, Volume 346, Issue 3, pp 1021–1050 | Cite as

Characterization of Reflection Positivity: Majoranas and Spins

Article

Abstract

We study linear functionals on a Clifford algebra (algebra of Majoranas) equipped with a reflection automorphism. For Hamiltonians that are functions of Majoranas or of spins, we find necessary and sufficient conditions on the coupling constants for reflection positivity to hold. One can easily check these conditions in concrete models. We illustrate this by discussing a number of spin systems with nearest-neighbor and long-range interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bis09.
    Biskup, M.: Reflection positivity and phase transitions in lattice spin models. In: Methods of contemporary mathematical statistical physics, vol. 1970 of Lecture Notes in Math., pp. 1–86. Springer, Berlin (2009)Google Scholar
  2. DLS76.
    Dyson F.J., Lieb E.H., Simon B.: Phase transitions in the quantum heisenberg model. Phys. Rev. Lett. 37(3), 120–123 (1976)ADSMathSciNetCrossRefGoogle Scholar
  3. DLS78.
    Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Statist. Phys. 18(4), 335–383 (1978)ADSMathSciNetCrossRefGoogle Scholar
  4. DM99.
    Deligne, P., Morgan, J.W.: Notes on Supersymmetry (following Joseph Bernstein). In: Deligne, P., Etingof, P., Freed, D., Jeffrey, L., Kazhdan, D., Morgan, J., Morrison, D., Witten, E. (eds.) Quantum fields and strings: a course for mathematicians, vol. 1. American Mathematical Society, Providence, Institute for Advanced Study (IAS), Princeton (1999)Google Scholar
  5. FILS78.
    Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Comm. Math. Phys. 62(1), 1–34 (1978)ADSMathSciNetCrossRefGoogle Scholar
  6. FL78.
    Fröhlich J., Lieb E.H.: Phase transitions in anisotropic lattice spin systems. Comm. Math. Phys. 60(3), 233–267 (1978)ADSMathSciNetCrossRefGoogle Scholar
  7. FL10.
    Frank R.L., Lieb E.H.: Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality. Calc. Var. Partial Differential Equations 39(1–2), 85–99 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. FOS83.
    Fröhlich J., Osterwalder K., Seiler E.: On virtual representations of symmetric spaces and their analytic continuation. Ann. of Math. 118(3), 461–489 (1983)MathSciNetCrossRefMATHGoogle Scholar
  9. FSS76.
    Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions and continuous symmetry breaking. Comm. Math. Phys. 50(1), 79–95 (1976)ADSMathSciNetCrossRefGoogle Scholar
  10. GJ79.
    Glimm J., Jaffe A.: A note on reflection positivity. Lett. Math. Phys. 3(5), 377–378 (1979)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. GJS75.
    Glimm J., Jaffe A., Spencer T.: Phase transitions for \({\phi_{2}^{4}}\) quantum fields. Comm. Math. Phys. 45(3), 203–216 (1975)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. JJM14.
    Jaffe A., Jäkel C.D., Martinez II. R.E.: Complex classical fields: a framework for reflection positivity. Comm. Math. Phys. 329(1), 1–28 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. JKL89.
    Jaffe, A., Klimek, S., Lesniewski, A.: Representations of the Heisenberg algebra on a Riemann surface. Comm. Math. Phys. 126(2), 421–431 (1989)Google Scholar
  14. JP15a.
    Jaffe A., Pedrocchi F.L.: Reflection positivity for Majoranas. Ann. Henri Poincaré 16(1), 189–203 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. JP15b.
    Jaffe A., Pedrocchi F.L.: Reflection Positivity for Parafermions. Comm. Math. Phys. 337(1), 455–472 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. KL81.
    Klein A., Landau L.J.: Construction of a unique selfadjoint generator for a symmetric local semigroup. J. Funct. Anal. 44(2), 121–137 (1981)MathSciNetCrossRefMATHGoogle Scholar
  17. Lie94.
    Lieb E.H.: Flux phase of the half-filled band. Phys. Rev. Lett. 73, 2158–2161 (1994)ADSCrossRefGoogle Scholar
  18. LM75.
    Lüscher M., Mack G.: Global conformal invariance in quantum field theory. Comm. Math. Phys. 41, 203–234 (1975)ADSMathSciNetCrossRefGoogle Scholar
  19. LM08.
    Lopes, O. Maris, M.: Symmetry of minimizers of some nonlocal variational problems. J. Funct. Anal. 254(2), 535–592 (2008)Google Scholar
  20. MN96.
    Macris N., Nachtergaele B.: On the flux phase conjecture at half-filling: an improved proof. J. Statist. Phys. 85(5–6), 745–761 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. NO14.
    Neeb K.-H., Ólafsson G.: Reflection positivity and conformal symmetry. J. Funct. Anal. 266(4), 2174–2224 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. NO15.
    Neeb K.H., Ólafsson G.: Reflection positive one-parameter groups and dilations. Complex Anal. Oper. Theory 9(3), 653–721 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. OS73a.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Comm. Math. Phys. 31, 83–112 (1973)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. OS73b.
    Osterwalder K., Schrader R.: Euclidean Fermi fields and a Feynman-Kac formula for boson-fermion models. Helv. Phys. Acta 46, 277–302 (1973)MathSciNetGoogle Scholar
  25. OS75.
    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. II. Comm. Math. Phys., 42, 281–305 (1975) (with an appendix by Stephen Summers)Google Scholar
  26. S38a.
    Schoenberg I.J.: Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44(3), 522–536 (1938)MathSciNetCrossRefMATHGoogle Scholar
  27. S38b.
    Schoenberg I.J.: Metric spaces and completely monotone functions. Ann. of Math. 39(4), 811–841 (1938)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA
  2. 2.Universiteit UtrechtUtrechtThe Netherlands

Personalised recommendations