Advertisement

Communications in Mathematical Physics

, Volume 342, Issue 1, pp 189–216 | Cite as

The External Field Dependence of the BCS Critical Temperature

  • Rupert L. FrankEmail author
  • Christian Hainzl
  • Robert Seiringer
  • Jan Philip Solovej
Article

Abstract

We consider the Bardeen–Cooper–Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show that in the limit where the ratio between the microscopic and macroscopic scale tends to zero, the next to leading order of the critical temperature is determined by the lowest eigenvalue of the linearization of the Ginzburg–Landau equation.

Keywords

Critical Temperature Macroscopic Scale Integral Kernel Landau Equation Admissible State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach V., Lieb E.H., Solovej J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76(1–2), 3–89 (1994)CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bardeen J., Cooper L., Schrieffer J.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    de Gennes P.G.: Superconductivity of Metals and Alloys. Westview Press, Oxford (1966)zbMATHGoogle Scholar
  4. 4.
    Eilenberger G.: Ableitung verallgemeinerter Ginzburg–Landau-Gleichungen für reine Supraleiter auseinem Variationsprinzip. Z. F. Physik 182(4), 427–438 (1965)CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Frank R.L., Hainzl C., Naboko S., Seiringer R.: The critical temperature for the BCS equation at weak coupling. J. Geom. Anal. 17, 559–568 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: Microscopic derivation of Ginzburg–Landau theory. J. Am. Math. Soc. 25(3), 667–713 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Frank, R.L., Hainzl, C., Seiringer, R., Solovej, J.P.: Derivation of Ginzburg–Landau theory for a one-dimensional system with contact interaction. In: Janas, J., et al. (eds.) Operator Methods in Mathematical Physics, vol. 227, pp. 57–88. Birkhäuser, Basel (2013)Google Scholar
  8. 8.
    Frank, R.L., Hainzl, C., Seiringer, R., Solovej, J.P.: Microscopic derivation of the Ginzburg–Landau model. In: Jensen, A. (ed.) XVIIth International Congress on Mathematical Physics, Proceedings of the ICMP Held in Aalborg, 6–11 August 2012, pp. 575–583. World Scientific, Singapore (2013)Google Scholar
  9. 9.
    Fournais, S., Helffer, B.: Spectral Methods in Surface Superconductivity. Progress in non-linear differential equations and their applications 77, Birkhäuser, Basel (2010)Google Scholar
  10. 10.
    Ginzburg V.L., Landau L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)Google Scholar
  11. 11.
    Gor’kov, L.P.: Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity. Zh. Eksp. Teor. Fiz. 36 (1959), 1918–1923; English translation Soviet Phys. JETP 9 (1959), 1364–1367Google Scholar
  12. 12.
    Hainzl C., Hamza E., Seiringer R., Solovej J.P.: The BCS functional for general pair interactions. Commun. Math. Phys. 281(2), 349–367 (2008)CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Hainzl C., Lewin M., Seiringer R.: A nonlinear theory for relativistic electrons at positive temperature. Rev. Math. Phys. 20(2), 1283–1307 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Hainzl C., Seiringer R.: Critical temperature and energy gap for the BCS equation. Phys. Rev. B 77, 184517-1–10 (2008)Google Scholar
  15. 15.
    Hainzl C., Seiringer R.: The BCS critical temperature for potentials with negative scattering length. Lett. Math. Phys. 84, 99–107 (2008)CrossRefADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Helffer B., Robert D.: Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles. J. Funct. Anal. 53, 246–268 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)zbMATHGoogle Scholar
  18. 18.
    Robert, D.: Autour de l’approximation semi-classique. Progress in Mathematics 68, Birkhäuser, Basel (1987)Google Scholar
  19. 19.
    Sandier, E., Serfaty, S.: Vortices in the magnetic Ginzburg–Landau model. Progress in non-linear differential equations and their applications. 70. Birkhäuser, Basel (2007)Google Scholar
  20. 20.
    Sigal, I.M.: Magnetic vortices, Abrikosov lattices and automorphic functions. Preprint (2013). arXiv:1308.5446
  21. 21.
    Thirring W.: Quantum Mathematical Physics. Atoms, Molecules and Large Systems. 2nd edn. Springer, Berlin (2002)Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Rupert L. Frank
    • 1
    Email author
  • Christian Hainzl
    • 2
  • Robert Seiringer
    • 3
  • Jan Philip Solovej
    • 4
  1. 1.Mathematics 253-37CaltechPasadenaUSA
  2. 2.Mathematisches InstitutUniversität TübingenTübingenGermany
  3. 3.Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
  4. 4.Department of MathematicsUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations