Skip to main content
Log in

Multidimensional Potential Burgers Turbulence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 15 April 2016

Abstract

We consider the multidimensional generalised stochastic Burgers equation in the space-periodic setting:

$$\frac{\partial \mathbf{u}}{\partial t}+(\nabla f(\mathbf{u}) \cdot \nabla) \mathbf{u}-\nu \Delta \mathbf{u}= \nabla \eta, \quad t \geq 0, \, \mathbf{x} \in\mathbb{T}^d=(\mathbb{R}/ \mathbb{Z})^d,$$

under the assumption that u is a gradient. Here f is strongly convex and satisfies a growth condition, ν is small and positive, while η is a random forcing term, smooth in space and white in time. For solutions u of this equation, we study Sobolev norms of u averaged in time and in ensemble: each of these norms behaves as a given negative power of ν. These results yield sharp upper and lower bounds for natural analogues of quantities characterising the hydrodynamical turbulence, namely the averages of the increments and of the energy spectrum. These quantities behave as a power of the norm of the relevant parameter, which is respectively the separation ℓ in the physical space and the wavenumber k in the Fourier space. Our bounds do not depend on the initial condition and hold uniformly in \({\nu}\). We generalise the results obtained for the one-dimensional case in [10], confirming the physical predictions in [4, 30]. Note that the form of the estimates does not depend on the dimension: the powers of \({\nu, |{\mathbf{k}}|, \ell}\) are the same in the one- and the multi-dimensional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1d, 2d, multi-d:

1, 2, Multi-dimensional

a.e.:

Almost every

a.s.:

Almost surely

(GN):

The Gagliardo–Nirenberg inequality (Lemma 2.1)

i.i.d.:

Independent identically distributed

r.v.:

Random variable

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, London (1975)

    MATH  Google Scholar 

  2. Aurell E., Frisch U., Lutsko J., Vergassola M.: On the multifractal properties of the energy dissipation derived from turbulence data. J. Fluid Mech. 238, 467–486 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bec, J., Frisch, U.: Burgulence. In: Lesieur, M., Yaglom, A., David, F. (eds.) Les Houches 2000: New Trends in Turbulence, pp. 341–383. Springer EDP-Sciences, Berlin (2001)

  4. Bec J., Khanin K.: Burgers turbulence. Phys. Rep. 447, 1–66 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Biryuk A.: Spectral properties of solutions of the Burgers equation with small dissipation. Funct. Anal. Appl. 35, 1–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biryuk, A.: On multidimensional Burgers type equations with small viscosity. In: Galdi, G., Heywood, J., Rannacher, R. (eds.) Contributions to Current Challenges in Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics, pp. 1–30. Birkhäuser, Boston (2004)

  7. Boritchev, A.: Turbulence for the generalised Burgers equation. Russ. Math. Surv. 69, 6(420), 3–44 (2014)

  8. Boritchev, A.: Generalised Burgers equation with random force and small viscosity. PhD thesis, Ecole Polytechnique (2012)

  9. Boritchev A.: Estimates for solutions of a low-viscosity kick-forced generalised Burgers equation. Proc. R. Soc. Edinb. A 143(2), 253–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boritchev A.: Sharp estimates for turbulence in white-forced generalised Burgers equation. Geom. Funct. Anal. 23(6), 1730–1771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boritchev A.: Decaying turbulence in generalised Burgers equation. Arch. Ration. Mech. Anal. 214(1), 331–357 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourgain J., Brezis H., Mironescu P.: Lifting in Sobolev spaces. J. Anal. Math. 80, 37–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brzeźniak Z., Goldys B., Neklyudov M.: Multidimensional stochastic Burgers equation. SIAM J. Math. Anal. 46(1), 871–889 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burgers J.M.: The nonlinear diffusion equation: asymptotic solutions and statistical problems. Reidel, Dordrecht (1974)

    Book  MATH  Google Scholar 

  15. Chorin A.: Lectures on Turbulence Theory, Volume 5 of Mathematics Lecture Series. Publish or Perish, Boston (1975)

    Google Scholar 

  16. Cole J.D.: On a quasilinear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951)

    MATH  Google Scholar 

  17. Da Prato G., Zabczyk J.: Stochastic Equations in Infinite Dimensions, Volume 45 of Encyclopaedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  18. Da Prato G., Zabczyk J.: Ergodicity for Infinite Dimensional Systems, Volume 229 of London Mathematical Society Lecture Notes. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  19. Dafermos C.: Hyperbolic Conservation Laws in Continuum Physics, Volume 325 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2010)

    Book  Google Scholar 

  20. Debussche, A., Vovelle, J.: Invariant measure of scalar first-order conservation laws with stochastic forcing. Probab. Theory Relat. Fields (to appear). arXiv:1310.3779

  21. Dirr N., Souganidis P.: Large-time behavior for viscous and nonviscous Hamilton–Jacobi equations forced by additive noise. SIAM J. Math. Anal. 37(3), 777–796 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Doering C., Gibbon J.D.: Applied Analysis of the Navier–Stokes Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  23. Evans, L.: Partial Differential Equations, Volume 19 of AMS Graduate Studies in Mathematics (2008)

  24. Florin V.: Some of the simplest nonlinear problems arising in the consolidation of wet soil. Izvestiya Akademii Nauk SSSR Otdel Technicheskih Nauk 9, 1389–1402 (1948)

    MathSciNet  Google Scholar 

  25. Fournier J.D., Frisch U.: L’équation de Burgers déterministe et stastistique. Journal de Mécanique Théorique et Appliquée 2, 699–750 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Frisch U.: Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  27. Gallavotti G.: Foundations of Fluid Dynamics. Texts and Monographs in Physics. Springer, Berlin (2002)

    Book  Google Scholar 

  28. Goldys B., Neklyudov M.: Beale–Kato–Majda type condition for Burgers equation. J. Math. Anal. Appl. 354(2), 397–411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gomes D., Iturriaga R., Khanin K., Padilla P.: Viscosity limit of stationary distributions for the random forced Burgers equation. Moscow Math. J. 5, 613–631 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Gurbatov S., Moshkov A., Noullez A.: Evolution of anisotropic structures and turbulence in the multidimensional Burgers equation. Phys. Rev. E 81(4), 13 (2010)

    Article  MathSciNet  Google Scholar 

  31. Gurbatov S., Saichev A.: Probability distribution and spectra of potential hydrodynamic turbulence. Radiophys. Quant. Electron. 27(4), 303–313 (1984)

    Article  ADS  Google Scholar 

  32. Hopf E.: The partial differential equation \({u_t+uu_x=\mu u_{xx}}\). Commun. Pure Appl. Math. 3(3), 201–230 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  33. Iturriaga R., Khanin K.: Burgers turbulence and random Lagrangian systems. Commun. Math. Phys. 232(3), 377–428 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kida S.: Asymptotic properties of Burgers turbulence. J. Fluid Mech. 93(2), 337–377 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Kraichnan R.H.: Lagrangian-history statistical theory for Burgers’ equation. Phys. Fluids 11(2), 265–277 (1968)

    Article  ADS  MATH  Google Scholar 

  36. Kreiss, H.-O.: Fourier expansions of the solutions of the Navier–Stokes equations and their exponential decay rate. Analyse mathématique et Applications 245–262 (1988)

  37. Kruzhkov S.N.: The Cauchy Problem in the large for nonlinear equations and for certain quasilinear systems of the first-order with several variables. Soviet Math. Doklady 5, 493–496 (1964)

    Google Scholar 

  38. Kuksin S.: On turbulence in nonlinear Schrödinger equations. Geom. Funct. Anal. 7(4), 783–822 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kuksin S.: Spectral properties of solutions for nonlinear PDEs in the turbulent regime. Geom. Funct. Anal. 9, 141–184 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuksin S., Shirikyan A.: Mathematics of Two-Dimensional Turbulence, Volume 194 of Cambridge tracts in mathematics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  41. Kuo H.-H.: Gaussian measures in Banach spaces, Volume 463 of Lecture Notes in Mathematics. Springer, Berlin (1975)

    Google Scholar 

  42. Landis E.: Second Order Equations of Elliptic and Parabolic Type, Volume 171 of Translations of Mathematical Monographs. AMS, Providence (1998)

    Google Scholar 

  43. Lang S.: Linear algebra, 2nd edn. Addison-Wesley, Reading (1972)

    Google Scholar 

  44. Lax P.: Hyperbolic Partial Differential Equations, Volume 14 of Courant Lecture Notes. AMS, Providence (1972)

    Google Scholar 

  45. Serre D.: Systems of Conservation Laws I. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  46. Shandarin S., Zeldovich Ya.: The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61(2), 185–220 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  47. Tadmor E.: Total variation and error estimates for spectral viscosity approximations. Math. Comput. 60(201), 245–256 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Taylor M.: Partial Differential Equations I: Basic Theory, Volume 115 of Applied Mathematical Sciences. Springer, Berlin (1996)

    Book  Google Scholar 

  49. Weinan E., Khanin K., Mazel A., Sinai Ya.: Probability distribution functions for the random forced Burgers equation. Phys. Rev. Lett. 78(10), 1904–1907 (1997)

    Article  ADS  Google Scholar 

  50. Weinan E., Khanin K., Mazel A., Sinai Ya.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. 151, 877–960 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Boritchev.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boritchev, A. Multidimensional Potential Burgers Turbulence. Commun. Math. Phys. 342, 441–489 (2016). https://doi.org/10.1007/s00220-015-2521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2521-7

Keywords

Navigation