Advertisement

Communications in Mathematical Physics

, Volume 344, Issue 3, pp 959–981 | Cite as

Conductance and Absolutely Continuous Spectrum of 1D Samples

  • L. Bruneau
  • V. JakšićEmail author
  • Y. Last
  • C.-A. Pillet
Article

Abstract

We characterize the absolutely continuous spectrum of the one-dimensional Schrödinger operators \({h = -\Delta + v}\) acting on \({\ell^2(\mathbb{Z}_+)}\) in terms of the limiting behaviour of the Landauer–Büttiker and Thouless conductances of the associated finite samples. The finite sample is defined by restricting h to a finite interval \({[1, L] \cap \mathbb{Z}_+}\) and the conductance refers to the charge current across the sample in the open quantum system obtained by attaching independent electronic reservoirs to the sample ends. Our main result is that the conductances associated to an energy interval \({I}\) are non-vanishing in the limit \({L \to \infty}\) iff \({{\rm sp}_{\rm ac}(h) \cap I \neq \emptyset}\). We also discuss the relationship between this result and the Schrödinger Conjecture (Avila, J Am Math Soc 28:579–616, 2015; Bruneau et al., Commun Math Phys 319:501–513, 2013).

Keywords

Continuous Spectrum Transfer Matrix Jacobi Matrice Open Quantum System Bloch Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AJPP.
    Aschbacher W., Jakšić V., Pautrat Y., Pillet C.-A.: Transport properties of quasi-free fermions. J. Math. Phys. 48, 032101 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. Av.
    Avila, A.: On the Kotani-Last and Schrödinger conjectures. J. Am. Math. Soc. 28, 579–616 (2015)Google Scholar
  3. BSP.
    Ben Sâad, R., Pillet, C-A.: A geometric approach to the Landauer–Büttiker formula. J. Math. Phys. 55, 075202 (2014)Google Scholar
  4. BLS.
    Breuer J., Last Y., Strauss Y.: Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators. Duke Math. J. 157, 425–460 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. BJ.
    Bruneau, L., Jakšić, V.: (unpublished)Google Scholar
  6. BJP.
    Bruneau, L., Jakšić, V., Pillet, C.A.: Landauer–Büttiker formula and Schrödinger conjecture. Commun. Math. Phys. 319, 501–513 (2013)Google Scholar
  7. BJLP1.
    Bruneau, L., Jakšić, V., Last, Y., Pillet, C.A.: Landauer–Büttiker and Thouless conductance. Commun. Math. Phys. (2015). doi: 10.1007/s00220-015-2321-0
  8. BJLP2.
    Bruneau, L., Jakšić, V., Last, Y., Pillet, C.A.: What is absolutely continuous spectrum? (In preparation)Google Scholar
  9. BILP.
    Büttiker M., Imry Y., Landauer R., Pinhas S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207 (1985)ADSCrossRefGoogle Scholar
  10. Ca.
    Carmona R.: One dimensional Schrödinger operators with random or deterministic potentials: New spectral types. J. Funct. Anal. 51, 229–258 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. CGM.
    Casati, G., Guarneri, I., Maspero, G.: Landauer and Thouless conductance: a band random matrix approach. J. Phys. I Fr. 7, 729 (1997)Google Scholar
  12. CJM.
    Cornean, H.D., Jensen, A., Moldoveanu, V.: A rigorous proof of the Landauer–Büttiker formula. J. Math. Phys. 46, 042106 (2005)Google Scholar
  13. DS.
    Deift P., Simon B.: Almost periodic Schrödinger operators III. The absolutely continuous spectrum in one dimension. Commun. Math. Phys. 90, 389–411 (1983)MathSciNetzbMATHGoogle Scholar
  14. ET.
    Edwards J.T., Thouless D.J.: Numerical studies of localization in disordered systems. J. Phys. C Solid State Phys. 5, 807–820 (1972)ADSCrossRefGoogle Scholar
  15. GS.
    Gesztesy F., Simon B.: The xi function. Acta Math. 176, 49–71 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. GP.
    Gilbert, D.J., Pearson, D.: On subordinacy and analysis of the spectrum of one dimensional Schrödinger operators. J. Math. Anal. 128, 30 (1987)Google Scholar
  17. JOPP.
    Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics—an introduction. In: Fröhlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales. Oxford University Press, Oxford (2012)Google Scholar
  18. Ko.
    Kotani, S.: Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In: Itÿo, K. (ed.) Stochastic Analysis, pp. 225–247. North-Holland, Amsterdam (1984)Google Scholar
  19. KR.
    Krutikov, D., Remling, C.: Schrödinger operators with sparse potentials: asymptotics of the Fourier transform of the spectral measure. Commun. Math. Phys. 223, 509–532 (2001)Google Scholar
  20. La.
    Landauer R.: Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21, 863 (1970)ADSCrossRefGoogle Scholar
  21. Lan.
    Landon, B.: Master’s thesis. McGill University, Montreal (2013)Google Scholar
  22. Las1.
    Last, Y.: Conductance and spectral properties. Ph.D. thesis. Technion, Israel (1994)Google Scholar
  23. Las2.
    Last Y.: On the measure of gaps and spectra for discrete 1D Schrödinger operators. Commun. Math. Phys. 149, 347–360 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. Las3.
    Last, Y.: A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants. Commun. Math. Phys. 151, 183–192 (1993)Google Scholar
  25. LaS.
    Last, Y., Simon, B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135, 329 (1999)Google Scholar
  26. MMG.
    Maslov, V.P., Molchanov, S.A., Gordon, A.Y.: Behavior of generalized eigenfunctions at infinity and the Schrödinger conjecture. Russ. J. Math. Phys. 1, 71 (1993)Google Scholar
  27. N.
    Nenciu, G.: Independent electrons model for open quantum systems: Landauer–Büttiker formula and strict positivity of the entropy production. J. Math. Phys. 48, 033302 (2007)Google Scholar
  28. Re.
    Remling C.: The absolutely continuous spectrum of Jacobi matrices. Ann. Math. 174(1), 125–171 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. ShSo.
    Shamis, M., Sodin, S.: On the measure of the absolutely continuous spectrum for Jacobi matrices. J. Spectr. Theory 1, 349–362 (2011)Google Scholar
  30. Si1.
    Simon, B.: Bounded eigenfunctions and absolutely continuous spectra for one dimensional Schrödinger operators. Proc. Am. Math. Soc. 124, 3361 (1996)Google Scholar
  31. Si2.
    Simon, B.: Schrödinger semigroups. Bull. AMS 7, 447 (1982)Google Scholar
  32. Si3.
    Simon, B.: Szegö’s Theorem and its Descendants. Spectral Theory for \({L^2}\) Perturbations of Orthogonal Polynomials. M.B. Porter Lectures. Princeton University Press, Princeton (2011)Google Scholar
  33. Si4.
    Simon B.: Kotani theory for one dimensional stochastic Jacobi matrices. Commun. Math. Phys. 89, 227–234 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. Si5.
    Simon, B.: Orthogonal polynomials with exponentially decaying recursion coefficients. In: Dawson, D., Jakšić, V., Vainberg, B. (eds.) Probability and Mathematical Physics. CRM Proc. and Lecture Notes, vol. 42, pp. 453–463 (2007)Google Scholar
  35. Y.
    Yafaev, D.R.: Mathematical scattering theory. General theory. In: Translated from the Russian by J. R. Schulenberger. Translations of Mathematical Monographs 105. American Mathematical Society, Providence (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. Bruneau
    • 1
  • V. Jakšić
    • 2
    Email author
  • Y. Last
    • 3
  • C.-A. Pillet
    • 4
    • 5
    • 6
    • 7
  1. 1.Département de Mathématiques, UMR 8088, CNRSUniversité de Cergy-PontoiseCergy-PontoiseFrance
  2. 2.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  3. 3.Institute of MathematicsThe Hebrew UniversityJerusalemIsrael
  4. 4.CPTAix-Marseille UniversitéMarseille Cedex 9France
  5. 5.UMR 7332CNRSMarseille Cedex 9France
  6. 6.CPTUniversité de ToulonLa Garde CedexFrance
  7. 7.FRUMAMMarseilleFrance

Personalised recommendations