Advertisement

Communications in Mathematical Physics

, Volume 346, Issue 3, pp 967–994 | Cite as

Operators from Mirror Curves and the Quantum Dilogarithm

  • Rinat Kashaev
  • Marcos MariñoEmail author
Article

Abstract

Mirror manifolds to toric Calabi–Yau threefolds are encoded in algebraic curves. The quantization of these curves leads naturally to quantum-mechanical operators on the real line. We show that, for a large number of local del Pezzo Calabi–Yau threefolds, these operators are of trace class. In some simple geometries, like local \({\mathbb{P}^2}\), we calculate the integral kernel of the corresponding operators in terms of Faddeev's quantum dilogarithm. Their spectral traces are expressed in terms of multi-dimensional integrals, similar to the state-integrals appearing in three-manifold topology, and we show that they can be evaluated explicitly in some cases. Our results provide further verifications of a recent conjecture which gives an explicit expression for the Fredholm determinant of these operators, in terms of enumerative invariants of the underlying Calabi–Yau threefolds.

Keywords

Topological String Formal Power Series Integral Kernel Trace Class ABJM Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACDKV.
    Aganagic, M., Cheng, M.C.N., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum Geometry of Refined Topological Strings. JHEP 1211, 019 (2012). [arXiv:1105.0630 [hep-th]]
  2. ADKMV.
    Aganagic, M., Dijkgraaf, R., Klemm, A., Mariño, M., Vafa, C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451 (2006). [arXiv:0312085 [hep-th]]
  3. AKa.
    Andersen, J.E., Kashaev, R.M.: A TQFT from quantum Teichmüller theory. Commun. Math. Phys. 330, 887 (2014). [arXiv:1109.6295 [math.QA]]
  4. AKb.
    Andersen, J.E., Kashaev, R.M.: Complex Quantum Chern-Simons. arXiv:1409.1208
  5. BCOV.
    Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994). [arXiv:9309140 [hep-th]]
  6. BC.
    Brini, A., Cavalieri, R.: Crepant resolutions and open strings II. arXiv:1407.2571
  7. CKYZ.
    Chiang, T.M., Klemm, A., Yau, S.T., Zaslow, E.: Local mirror symmetry: Calculations and interpretations. Adv. Theor. Math. Phys. 3, 495 (1999). [arXiv:9903053 [hep-th]]
  8. CKK.
    Choi, J., Katz, S., Klemm, A.: The refined BPS index from stable pair invariants. Commun. Math. Phys. 328, 903 (2014). [arXiv:1210.4403 [hep-th]]
  9. CR.
    Clader, E., Ruan, Y.: Mirror symmetry constructions. arXiv:1412.1268
  10. DG13.
    Dimofte T., Dimofte S.: The quantum content of the gluing equations. Geom. Topol. 17(3), 1253–1315 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. DGLZ09.
    Dimofte T., Gukov S., Lenells J., Zagier D.: Exact results for perturbative Chern-Simons theory with complex gauge group. Commun. Number Theory Phys. 3(2), 363–443 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Dim.
    Dimofte T.: Complex Chern-Simons theory at level k via the 3d-3d correspondence. Commun. Math. Phys. 339(2), 619–662 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. DT.
    Dorey, P., Dunning, C., Tateo, R.: The ODE/IM Correspondence. J. Phys. A 40, R205 (2007). [arXiv:0703066 [hep-th]]
  14. FP.
    Faber C., Pandharipande R.: Hodge integrals and Gromov-Witten theory. Invent. Math. 139(1), 173–199 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Fad95.
    Faddeev L.D.: Discrete heisenberg-weyl group and modular group. Lett. Math. Phys. 34(3), 249–254 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. FK94.
    Faddeev L.D., Kashaev R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9(5), 427–434 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. FT.
    Faddeev, L.D., Takhtajan, L.A.: On the spectral theory of one functional-difference operator from conformal field theory. arXiv:1408.0307 [math.SP]
  18. FC.
    Fock, V.V., Chekhov, L.O.: A quantum Teichmüller space. Teoret. and Math. Phys, 120(3), 511–528 (1999)(Russian); English translation in Theor. Math. Phys., 120(3), 1245–1259 (1999)Google Scholar
  19. GK.
    Garoufalidis, S., Kashaev, R.M.: Evaluation of state integrals at rational points. arXiv:1411.6062
  20. GV.
    Gopakumar, R., Vafa, C.: M theory and topological strings. 2. [arXiv:9812127 [hep-th]]
  21. GKMR.
    Gu, J., Klemm, A., Mariño, M., Reuter, J.: arXiv:1506.09176 [hep-th]
  22. GHM.
    Grassi, A., Hatsuda, Y., Mariño, M.: Topological strings from Quantum Mechanics. arXiv:1410.3382
  23. GHMb.
    Grassi, A., Hatsuda, Y., Mariño, M.: Quantization conditions and functional equations in ABJ(M) theories. arXiv:1410.7658 [hep-th]
  24. HHHNSY.
    Hanada, M., Honda, M., Honma, Y., Nishimura, J., Shiba, S., Yoshida, Y.: Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant. JHEP 1205, 121 (2012). [arXiv:1202.5300 [hep-th]]
  25. HMMO.
    Hatsuda, Y., Mariño, M., Moriyama, S., Okuyama, K.: Non-perturbative effects and the refined topological string. JHEP 1409, 168 (2014). arXiv:1306.1734 [hep-th]
  26. HMO.
    Hatsuda, Y., Moriyama, S., Okuyama, K.: Instanton Effects in ABJM Theory from Fermi Gas Approach. JHEP 1301, 158 (2013). [arXiv:1211.1251 [hep-th]]
  27. HO.
    Hatsuda, Y., Okuyama, K.: Probing non-perturbative effects in M-theory. JHEP 1410, 158 (2014). [arXiv:1407.3786 [hep-th]]
  28. Hik01.
    Hikami K.: Hyperbolic structure arising from a knot invariant. Internat. J. Modern Phys. A 16(19), 3309–3333 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. HKP.
    Huang, M.X., Klemm, A., Poretschkin, M.: Refined stable pair invariants for E-, M- and p, q]-strings. JHEP 1311, 112 (2013) [arXiv:1308.0619 [hep-th]]
  30. HKRS.
    Huang, M.X., Klemm, A., Reuter, J., Schiereck, M.: Quantum geometry of del Pezzo surfaces in the Nekrasov-Shatashvili limit. JHEP 15(02), 031 (2015). [arXiv:1401.4723 [hep-th]]
  31. HW.
    Huang, M.X., Wang, X.f.: Topological Strings and Quantum Spectral Problems. JHEP 1409, 150 (2014). [arXiv:1406.6178 [hep-th]]
  32. IKV.
    Iqbal, A., Kozcaz, C., Vafa, C.: The refined topological vertex. JHEP 0910, 069 (2009) [arXiv:0701156 [hep-th]]
  33. KM.
    Kallen, J., Mariño, M.: Instanton effects and quantum spectral curves. [arXiv:1308.6485 [hep-th]]
  34. K1.
    Kashaev R.M.: Quantization of Teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys. 43, 105–115 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  35. K2.
    Kashaev, R.M.: The Liouville central charge in quantum Teichmüller theory. Tr. Mat. Inst. Steklova 226 (1999), Mat. Fiz. Probl. Kvantovoi Teor. Polya, 72–81; translation in Proc. Steklov Inst. Math., no. 3 (226), 63–71 (1999)Google Scholar
  36. K3.
    Kashaev, R.M.: On the Spectrum of Dehn Twists in Quantum Teichmüller Theory. Physics and Combinatorics 2000. In: Proceedings of Nagoya 2000 International Workshop, Graduate School of Mathematics, pp. 63–81. Nagoya University 21-26 August (2000)Google Scholar
  37. K4.
    Kashaev, R.: The quantum dilogarithm and Dehn twists in quantum Teichmüller theory. Integrable structures of exactly solvable two-dimensional models of quantum field theory (Kiev, 2000). NATO Sci. Ser. II Math. Phys. Chem. 35, 211–221 (2001)Google Scholar
  38. KLV12.
    Kashaev, R.M., Luo, F., Vartanov, G.: A TQFT of Turaev–Viro type on shaped triangulations (2012) arXiv:1210.8393
  39. KKV.
    Katz, S.H., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173 (1997). [arXiv:9609239 [hep-th]].
  40. MaMo.
    Mariño, M., Moore, G.W.: Counting higher genus curves in a Calabi-Yau manifold. Nucl. Phys. B 543, 592 (1999). [hep-th/9808131]
  41. MP.
    Mariño, M., Putrov, P.: ABJM theory as a Fermi gas. J. Stat. Mech. 1203, P03001 (2012). [arXiv:1110.4066 [hep-th]]
  42. MM.
    Mironov, A., Morozov, A.: Nekrasov Functions and Exact Bohr-Sommerfeld Integrals. JHEP 1004, 040 (2010). [arXiv:0910.5670 [hep-th]]
  43. NO.
    Nekrasov, N., Okounkov, A.: Membranes and Sheaves. arXiv:1404.2323 [math.AG]
  44. NS.
    Nekrasov, N.A., Shatashvili, S.L.: Quantization of Integrable Systems and Four Dimensional Gauge Theories. arXiv:0908.4052 [hep-th]
  45. TW.
    Tracy, C.A., Widom, H.: Proofs of two conjectures related to the thermodynamic Bethe ansatz. Commun. Math. Phys. 179, 667 (1996) [arXiv:9509003 [solv-int]]
  46. Si.
    Simon, B.: Trace ideals and their applications, second edition. American Mathematical Society, Providence (2000)Google Scholar
  47. Z.
    Zamolodchikov, A.B.: Painleve III and 2-d polymers. Nucl. Phys. B 432, 427 (1994) [hep-th/9409108]
  48. ZJJ.
    Zinn-Justin, J., Jentschura, U.D.: Multi-instantons and exact results I: Conjectures, WKB expansions, and instanton interactions. Ann. Phys. 313, 197 (2004). [arXiv:0501136 quant-ph]]

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Section de MathématiquesUniversité de GenèveGeneva 4Switzerland
  2. 2.Section de Mathématiques et Département de Physique ThéoriqueUniversité de GenèveGeneva 4Switzerland

Personalised recommendations