Communications in Mathematical Physics

, Volume 341, Issue 2, pp 391–434 | Cite as

Beyond Bell’s Theorem II: Scenarios with Arbitrary Causal Structure

Article

Abstract

It has recently been found that Bell scenarios are only a small subclass of interesting setups for studying the non-classical features of quantum theory within spacetime. We find that it is possible to talk about classical correlations, quantum correlations and other kinds of correlations on any directed acyclic graph, and this captures various extensions of Bell scenarios that have been considered in the literature. From a conceptual point of view, the main feature of our approach is its high level of unification: while the notions of source, choice of setting and measurement all play seemingly different roles in a Bell scenario, our formalism shows that they are all instances of the same concept of “event”. Our work can also be understood as a contribution to the subject of causal inference with latent variables. Among other things, we introduce hidden Bayesian networks as a generalization of hidden Markov models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  2. 2.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)Google Scholar
  3. 3.
    Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)MATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Vazirani U., Vidick T.: Fully device independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)CrossRefADSGoogle Scholar
  5. 5.
    Pironio S., Acín A., Massar S., de la Giroday A. Boyer., Matsukevich D.N., Maunz P., Olmschenk S., Hayes D., Luo L., Manning T.A., Monroe C.: Random numbers certified by Bells theorem. Nature 464, 1021 (2010)CrossRefADSGoogle Scholar
  6. 6.
    Vazirani, U., Vidick, T.: Certifiable quantum dice: or, true random number generation secure against quantum adversaries. In: Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pp. 61–76 (2012)Google Scholar
  7. 7.
    Svetlichny G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Popescu S.: Bell’s inequalities and density matrices: revealing “hidden” nonlocality. Phys. Rev. Lett. 74, 2619–2622 (1995)MATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Branciard C., Gisin N., Pironio S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Fritz T.: Beyond Bell’s theorem I: correlation scenarios. New J. Phys. 14, 103001 (2012)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Gallego R., Würflinger L.E., Chaves R., Acín A., Navascués M.: Nonlocality in sequential correlation scenarios. New J. Phys. 16, 033037 (2014)CrossRefADSGoogle Scholar
  12. 12.
    Hardy L.: The operator tensor formulation of quantum theory. Philos. Trans. R. Soc. A 28, 3385–3417 (2012)CrossRefMathSciNetMATHADSGoogle Scholar
  13. 13.
    Pearl, J.: Causality: Models, reasoning, and inference, 2nd edn. Cambridge University Press, Cambridge (2009)Google Scholar
  14. 14.
    Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777–780 (1935)MATHCrossRefADSGoogle Scholar
  15. 15.
    Wood C.J., Spekkens R.W.: The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning. New. J. Phys. 17, 033002 (2015)CrossRefADSGoogle Scholar
  16. 16.
    Henson J., Lal R., Pusey M.F.: Theory-independent limits on correlations from generalised bayesian networks. New J. Phys. 16, 113043 (2014)CrossRefADSGoogle Scholar
  17. 17.
    Chaves R., Luft L., Gross D.: Causal structures from entropic information: geometry and novel scenarios. New. J. Phys. 16, 043001 (2014)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Chaves, R., Luft, L., Maciel, T.O., Gross, D., Janzing, D., Schölkopf, B.: Inferring latent structures via information inequalities. In: Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pp. 112–121. AUAI Press (2014)Google Scholar
  19. 19.
    Chaves R., Majenz C., Gross D.: Information–theoretic implications of quantum causal structures. Nat. Commun. 6, 5766 (2015)CrossRefADSGoogle Scholar
  20. 20.
    Chaves R., Kueng R., Brask J.B., Gross D.: A unifying framework for relaxations of the causal assumptions in Bell’s theorem. Phys. Rev. Lett. 114, 140403 (2015)CrossRefADSGoogle Scholar
  21. 21.
    Arntzenius, F.: Reichenbach’s common cause principle. In: Zalta, E.N., (eds.) The Stanford Encyclopedia of Philosophy. Stanford University (2010). http://plato.stanford.edu/archives/fall2010/entries/physics-Rpcc/
  22. 22.
    Oreshkov, O., Costa, F., Brukner, Č.: Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012)Google Scholar
  23. 23.
    Bierhorst P.: A rigorous analysis of the Clauser–Horne–Shimony–Holt inequality experiment when trials need not be independent. Found. Phys. 44, 736–761 (2014)MATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Henson, J.: The causal set approach to quantum gravity (2006). arXiv:gr-qc/0601121
  25. 25.
    Barrett J., Linden N., Massar S., Pironio S., Popescu S., Roberts D.: Nonlocal correlations as an information–theoretic resource. Phys. Rev. A 71, 022101 (2005)CrossRefADSGoogle Scholar
  26. 26.
    Leggett A.J., Garg A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?. Phys. Rev. Lett. 54, 857 (1985)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Fine A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48(5), 291–295 (1982)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Upper, D.R.: Theory and Algorithms for Hidden Markov Models and Generalized Hidden Markov Models. PhD thesis, University of California at Berkeley (1989). http://csc.ucdavis.edu/~cmg/papers/TAHMMGHMM.pdf.gz
  29. 29.
    Chiribella G., D’Ariano G.M., Perinotti P.: Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010)CrossRefADSGoogle Scholar
  30. 30.
    Coecke, B., Paquette, E.O.: Categories for the practising physicist. In: Coecke, B. (ed.) New Structures for Physics, pp. 173–286. Springer, Berlin (2011)Google Scholar
  31. 31.
    Spivak, D.: Category theory for scientists (old version) (2013). arXiv:1302.6946
  32. 32.
    Coecke B., Lal R.: Causal categories: relativistically interacting processes. Found. Phys. 43(4), 458–501 (2012)MathSciNetCrossRefMATHADSGoogle Scholar
  33. 33.
    Coecke B.: Quantum picturalism. Contemp. Phys. 51(1), 59–83 (2010)CrossRefADSGoogle Scholar
  34. 34.
    Joyal A., Street R.: The geometry of tensor calculus, I. Adv. Math. 88, 55–112 (1991)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Leinster, T.: Higher operads, higher categories. Condon Mathematical Society Lecture Notes Series 298. Cambridge University Press, Cambridge (2004). arXiv:math/0305049
  36. 36.
    Coecke, B.: Terminality implies non-signalling. In: Proceedings 11th workshop on Quantum Physics and Logic, vol. 172, pp. 27–35 (2014)Google Scholar
  37. 37.
    Spivak, D.I., Schultz, P., Rupel, D.: String diagrams for traced and compact categories are oriented 1-cobordisms (2015). arXiv:1508.01069
  38. 38.
    Barrett J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75(3), 032304 (2007)CrossRefADSGoogle Scholar
  39. 39.
    Short A., Barrett J.: Strong nonlocality: a trade-off between states and measurements. New J. Phys. 12, 033034 (2010)MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    Gisin N.: Non-realism: deep thought or soft option?. Found. Phys. 42, 80–85 (2012)MATHMathSciNetCrossRefADSGoogle Scholar
  41. 41.
    Gisin, N.: A possible definition of a realistic physics theory (2014). arXiv:1401.0419
  42. 42.
    Halmos P.R.: A Hilbert Space Problem Book, volume 19 of Graduate Texts in Mathematics, 2nd edn. Springer, Berlin (1982)CrossRefGoogle Scholar
  43. 43.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. I, volume 100 of Pure and Applied Mathematics. Academic Press Inc. Harcourt Brace Jovanovich Publishers. Elementary theory (1983)Google Scholar
  44. 44.
    Conway J.B.: A Course in Operator Theory, volume 21 of Graduate Studies in Mathematics. American Mathematical Society, Providence (1999)Google Scholar
  45. 45.
    Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  46. 46.
    Gales M., Young S.: The application of hidden Markov models in speech recognition. Found. Trends Signal Process. 1(3), 195–304 (2008)CrossRefMATHGoogle Scholar
  47. 47.
    Eddy S.R.: What is a hidden Markov model?. Nat. Biotechnol. 22, 1315–1316 (2004)CrossRefGoogle Scholar
  48. 48.
    Ghahramani Z.: An introduction to hidden Markov models and Bayesian networks. Int. J. Pattern Recognit. Artif. Intell. 15(1), 9–42 (2001)CrossRefGoogle Scholar
  49. 49.
    Leifer M., Spekkens R.: Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013)CrossRefADSGoogle Scholar
  50. 50.
    Halmos P.R.: Measure Theory. D. Van Nostrand Company, Inc., New York (1950)MATHCrossRefGoogle Scholar
  51. 51.
    Panangaden P.: Labelled Markov Processes. Imperial College Press, London (2009)MATHCrossRefGoogle Scholar
  52. 52.
    Baez J.C., Fritz T.: A Bayesian characterization of relative entropy. Theory Appl. Categories 29, 421–456 (2014)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations