Communications in Mathematical Physics

, Volume 341, Issue 2, pp 667–697 | Cite as

Metric Projective Geometry, BGG Detour Complexes and Partially Massless Gauge Theories



A projective geometry is an equivalence class of torsion free connections sharing the same unparametrised geodesics; this is a basic structure for understanding physical systems. Metric projective geometry is concerned with the interaction of projective and pseudo-Riemannian geometry. We show that the BGG machinery of projective geometry combines with structures known as Yang–Mills detour complexes to produce a general tool for generating invariant pseudo-Riemannian gauge theories. This produces (detour) complexes of differential operators corresponding to gauge invariances and dynamics. We show, as an application, that curved versions of these sequences give geometric characterizations of the obstructions to propagation of higher spins in Einstein spaces. Further, we show that projective BGG detour complexes generate both gauge invariances and gauge invariant constraint systems for partially massless models: the input for this machinery is a projectively invariant gauge operator corresponding to the first operator of a certain BGG sequence. We also connect this technology to the log-radial reduction method and extend the latter to Einstein backgrounds.


Bianchi Identity Projective Geometry Einstein Metrics Conformal Gravity Cartan Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alkalaev K.B., Grigoriev M.: Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type. Nucl. Phys. B 853, 663–687 (2011)MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Armstrong, S.: Projective holonomy. I. Principles and properties. Ann. Glob. Anal. Geom. 33, 47–69 (2008). arXiv:math/0602620
  3. 3.
    Bailey T.N., Eastwood M.G., Gover A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 24, 1191–1217 (1994)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Barnich G., Grigoriev M.: Parent form for higher spin fields on anti-de Sitter space. JHEP 0608, 013–052 (2006)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Baston R.J.: Almost Hermitian symmetric manifolds. II. Differential invariants. Duke Math. J. 63, 113–138 (1991)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Biswas, T., Siegel, W.: Radial dimensional reduction: anti-de Sitter theories from flat. JHEP 0207, 005–034 (2002). arXiv:hep-th/0203115
  7. 7.
    Bokan N., Gilkey P., Živaljević, R.: An inhomogeneous elliptic complex. J. Anal. Math. 61, 367–393 (1993)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of \({\mathfrak{g}}\)-modules. In: Gelfand, I.M. (ed.) Lie Groups and Their Representations, pp. 21–64. Adam Hilger (1975)Google Scholar
  9. 9.
    Branson T., Gover A.R.: Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature. Commun. Partial Differ. Equ. 30, 1611–1669 (2005)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Branson, T., Gover, A.R.: The conformal deformation detour complex for the obstruction tensor. Proc. Am. Math. Soc. 135, 2961–2965Google Scholar
  11. 11.
    Calabi, E.: On compact Riemannian manifolds with constant curvature I. In: Differential Geometry, Proceedings of Symposia in Pure Mathematics, vol. III, pp. 155–180. American Mathematical Society, Providence (1961)Google Scholar
  12. 12.
    Calderbank D., Diemer T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences. J. Reine Angew. Math. 537, 67–103 (2001)MATHMathSciNetGoogle Scholar
  13. 13.
    Calderbank, D., Diemer, T., Souček, V.: Ricci-corrected derivatives and invariant differential operators. Differ. Geom. Appl. 23, 149–175 (2005). arXiv:math/0310311
  14. 14.
    Čap, A.: Overdetermined systems, conformal differential geometry, and the BGG complex. In: Symmetries and Overdetermined Systems of Partial Differential Equations, pp. 1–24, The IMA Volumes in Mathematics and its Applications, vol. 144. Springer, New York (2008). arXiv:math/0610225
  15. 15.
    Čap A., Gover A.R.: Tractor calculi for parabolic geometries. Trans. Am. Math. Soc. 354(4), 1511–1548 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Čap, A., Gover, A.R.: Projective compactifications and Einstein metrics. J. Reine Angew. Math. (to appear). doi: 10.1515/crelle-2014-0036. arXiv:1304.1869
  17. 17.
    Čap A., Gover A.R., Hammerl M.: Projective BGG equations, algebraic sets, and compactifications of Einstein geometries. J. Lond. Math. Soc. 86, 433–454 (2012)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Čap A., Gover A.R., Hammerl M.: Holonomy reductions of Cartan geometries and curved orbit decompositions. Duke Math. J. 163(5), 1035–1070 (2014)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Čap A., Gover A.R., Macbeth H.: Einstein metrics in projective geometry. Geom. Dedicata 168, 235–244 (2014)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Čap A., Slovák J., Souček V.: Bernstein–Gelfand–Gelfand sequences. Ann. Math. 154, 97–113 (2001)MATHCrossRefGoogle Scholar
  21. 21.
    Čap A., Souček V.: Subcomplexes in curved BGG-sequences. Math. Ann. 354(1), 111–136 (2012). arXiv:math.dg/0508534
  22. 22.
    Cartan E.: Sur les variétés à connexion projective. Bull. Soc. Math. Fr. 52, 205–241 (1924)MATHMathSciNetGoogle Scholar
  23. 23.
    Cherney, D., Latini, E., Waldron, A.: BRST detour quantization. J. Math. Phys. 51, 062302, 51–95 (2010). arXiv:0906.4814 [hep-th]
  24. 24.
    Cherney, D., Latini, E., Waldron, A.: Generalized Einstein operator generating functions. Phys. Lett. B 682, 472–475 (2010). arXiv:0909.4578 [hep-th]
  25. 25.
    Cherney, D., Latini, E., Waldron, A.: Quaternionic Kähler detour complexes and N=2 supersymmetric black holes. Commun. Math. Phys. 302, 843–873 (2011). arXiv:1003.2234 [hep-th]
  26. 26.
    Curtright T.: Massless field supermultiplets with arbitrary spin. Phys. Lett. B 85, 219–242 (1979)CrossRefADSGoogle Scholar
  27. 27.
    Deser S., Nepomechie R.I.: Anomalous propagation of gauge fields in conformally flat spaces. Phys. Lett. B 132, 321–331 (1983)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Deser S., Nepomechie R.I.: Gauge invariance versus masslessness in de Sitter space. Ann. Phys. 154, 396–434 (1984)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Deser, S., Joung, E., Waldron, A.: Gravitational- and self-coupling of partially massless spin 2. Phys. Rev. D 86, 104004–104014 (2012). arXiv:1301.4181
  30. 30.
    Deser, S., Joung, E., Waldron, A.: Partial masslessness and conformal gravity. J. Phys. A 46, 214019–214038 (2013). arXiv:1208.1307
  31. 31.
    Deser, S., Waldron, A.: Gauge invariances and phases of massive higher spins in (A)dS. Phys. Rev. Lett. 87, 031601–031605 (2001). arXiv:hep-th/0102166
  32. 32.
    Deser, S., Waldron, A.: Partial masslessness of higher spins in (A)dS. Nucl. Phys. B 607, 577–604 (2001). arXiv:hep-th/0103198
  33. 33.
    Deser, S., Waldron, A.: Stability of massive cosmological gravitons. Phys. Lett. B 508, 347–353 (2001). arXiv:hep-th/0103255
  34. 34.
    Deser, S., Waldron, A.: Null propagation of partially massless higher spins in (A)dS and cosmological constant speculations. Phys. Lett. B 513, 137–147 (2001). arXiv:hep-th/0105181
  35. 35.
    Deser, S., Waldron, A.: Arbitrary spin representations in de Sitter from dS/CFT with applications to dS supergravity. Nucl. Phys. B 662, 379–392 (2003). arXiv:hep-th/0301068
  36. 36.
    Deser, S., Waldron, A.: Conformal invariance of partially massless higher spins. Phys. Lett. B 603, 30–40 (2004). arXiv:hep-th/0408155
  37. 37.
    Deser, S., Waldron, A.: Partially massless spin 2 electrodynamics. Phys. Rev. D 74, 084036 (2006). arXiv:hep-th/0609113
  38. 38.
    Deser, S., Waldron, A.: PM =  EM: partially massless duality invariance. Phys. Rev. D 87, 087702–087705 (2013). arXiv:1301.2238 [hep-th]
  39. 39.
    Diemer, T.: Conformal geometry, representation theory and linear fields. Ph.D. Thesis, Universität Bonn (1999)Google Scholar
  40. 40.
    Dolan, L., Nappi, C.R., Witten, E.: Conformal operators for partially massless states. JHEP 0110, 016–029 (2001). arXiv:hep-th/0109096
  41. 41.
    Eastwood, M.: A complex from linear elasticity. In: The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), pp. 23–29. Rend. Circ. Mat. Palermo (2) Suppl. No. 63 (2000)Google Scholar
  42. 42.
    Eastwood, M.: Prolongations of linear overdetermined systems on affine and Riemannian manifolds. In: Proceedings of the 24th Winter School “Geometry and Physics”, pp. 89–108. Circolo Matematico di Palermo, Palermo (2005)Google Scholar
  43. 43.
    Eastwood, M.: Symmetries and overdetermined systems of partial differential equations. IMA Vol. Math. Appl. 144, 41–60 (2008)Google Scholar
  44. 44.
    Eastwood M.: The Cartan product. Bull. Belg. Math. Soc. 11, 641–651 (2005)MathSciNetGoogle Scholar
  45. 45.
    Eastwood, M., Gover, A.R.: The BGG complex on projective space. SIGMA 7, 060–068 (2011). arXiv:1106.4623
  46. 46.
    Eastwood, M., Rice, J.: Conformally invariant differential operators on Minkowski space and their curved analogues. Commun. Math. Phys. 109 (1987), 207–228. Erratum: Commun. Math. Phys. 144, 213 (1992)Google Scholar
  47. 47.
    Eastwood, M.G., Matveev, V.: Metric connections in projective differential geometry. In: Symmetries and Overdetermined Systems of Partial Differential Equations, pp. 339–350. The IMA Volumes in Mathematics and its Applications, vol. 144. Springer, New York (2008)Google Scholar
  48. 48.
    Fedosov, B.: Deformation Quantization and Index Theory. Mathematical topics, vol. 9. Akademie-Verlag, Berlin (1996)Google Scholar
  49. 49.
    Fronsdal C.: Massless fields with integer spin. Phys. Rev. D 18, 3624–3643 (1978)CrossRefADSGoogle Scholar
  50. 50.
    Gallot S.: Équations différentielles charactéristiques de la sphère. Ann. Sci. École Norm. Sup. (4) 12(2), 235–267 (1979)MathSciNetGoogle Scholar
  51. 51.
    Gasqui J.: Sur la résolubilité locale des équations d’Einstein. Compositio Math. 47, 43–69 (1982)MATHMathSciNetGoogle Scholar
  52. 52.
    Gibbons, G.W., Rychenkova, P.: Cones, triSasakian structures and superconformal invariance. Phys. Lett. B 443, 138 (1998). arXiv:hep-th/9809158
  53. 53.
    Gover, A.R.: Conformally invariant operators of standard type. Q. J. Math. Oxf. 40, 197–207 (1989)Google Scholar
  54. 54.
    Gover, A.R., Hallowell, K., Waldron, A.: Higher spin gravitational couplings and the Yang–Mills detour complex. Phys. Rev. D 75, 024032 (2007). arXiv:hep-th/0606160
  55. 55.
    Gover, A.R., Macbeth, H.: Detecting Einstein geodesics: Einstein metrics in projective and conformal geometry. Differ. Geom. Appl. 33, 44 (2014). arXiv:1212.6286
  56. 56.
    Gover, A.R., Nurowski, P.N.: Calculus and invariants on almost complex manifolds, including projective and conformal geometry. Ill. J. Math. 57, 383–427 (2013). arXiv:1208.0648
  57. 57.
    Gover, A.R., Panai, R., Willse, T.: Nearly Kähler geometry and (2,3,5)-distributions via projective holonomy. arXiv:1403.1959
  58. 58.
    Gover, A.R., Shaukat, A., Waldron, A.: Tractors, mass and Weyl invariance. Nucl. Phys. B 812, 424–455 (2009). arXiv:0810.2867
  59. 59.
    Gover, A.R., Shaukat, A., Waldron, A.: Weyl invariance and the origins of mass. Phys. Lett. B 675, 93–97 (2009). arXiv:0812.3364
  60. 60.
    Gover, A.R., Somberg, P., Souček, V.: Yang–Mills detour complexes and conformal geometry. Commun. Math. Phys. 278, 307–327 (2008). arXiv:math/0606401
  61. 61.
    Grigoriev, M., Waldron, A.: Massive higher spins from BRST and tractors. Nucl. Phys. B 853, 291–343 (2011). arXiv:1104.4994 [hep-th]
  62. 62.
    Hallowell, K., Waldron, A.: Constant curvature algebras and higher spin action generating functions. Nucl. Phys. B 724, 453–497 (2005). arXiv:hep-th/0505255
  63. 63.
    Higuchi A.: Forbidden mass range for spin-2 field theory in de Sitter space-time. Nucl. Phys. B 282, 397–438 (1987)MathSciNetCrossRefADSGoogle Scholar
  64. 64.
    Kiosak, V., Matveev, V.: Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two. Commun. Math. Phys. 297, 401–426 (2010). arXiv:0810.0994
  65. 65.
    Kostant B.: Lie algebra cohomology and the generalized Borel Weil theorem. Ann. Math. 74, 329–387 (1961)MATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    Lepowsky J.: A generalization of the Bernstein–Gelfand–Gelfand resolution. J. Algebra 49, 496–511 (1977)MATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    Maldacena, J.: Einstein gravity from conformal gravity. arXiv:1105.5632
  68. 68.
    Mikes J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 311–333 (1996)MATHMathSciNetCrossRefGoogle Scholar
  69. 69.
    Matveev V.S.: Hyperbolic manifolds are geodesically rigid. Invent. Math. 151(3), 579–609 (2003)MATHMathSciNetCrossRefADSGoogle Scholar
  70. 70.
    Shaynkman, O.V., Tipunin, I.Y., Vasiliev, M.A.: Unfolded form of conformal equations in M dimensions and \({o(M + 2)}\) modules. Rev. Math. Phys. 18, 823–886 (2006). arXiv:hep-th/0401086
  71. 71.
    Sinjukov, N.S.: Geodesic Mappings of Riemannian Spaces (Russian). Nauka, Moscow (1979)Google Scholar
  72. 72.
    Skvortsov, E.D.: Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects. JHEP 1001, 106 (2010). arXiv:0910.3334
  73. 73.
    Skvortsov, E.D., Vasiliev, M.A.: Geometric formulation for partially massless fields. Nucl. Phys. B 756, 117 (2006). arXiv:hep-th/0601095
  74. 74.
    Thomas, T.Y.: Announcement of a projective theory of affinely connected manifolds. Proc. Natl. Acad. Sci. 11, 588–589 (1925)Google Scholar
  75. 75.
    Vasiliev M.A.: Consistent equations for interacting massless fields of all spins in the first order in curvatures. Ann. Phys. 190, 59–106 (1989)MATHMathSciNetCrossRefADSGoogle Scholar
  76. 76.
    Vasiliev, M.A.: Bosonic conformal higher-spin fields of any symmetry. Nucl. Phys. B 829, 176–224 (2010). arXiv:0909.5226
  77. 77.
    Zinoviev, Y.: On massive high spin particles in (A)dS. arXiv:hep-th/0108192
  78. 78.
    Zinoviev, Y.M.: On spin 3 interacting with gravity. Class. Quantum Gravity 26, 035022–035022 (2009). arXiv:0805.2226
  79. 79.
    Zinoviev, Y.M.: Massive spin-2 in the Fradkin–Vasiliev formalism. I. Partially massless case. Nucl. Phys. B 886, 712–732 (2014). arXiv:1405.4065
  80. 80.
    Zuckerman G.: Tensor products of finite and infinite dimensional representations of semisimple Lie Groups. Ann. Math. 106, 295–308 (1977)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Rod Gover
    • 1
  • Emanuele Latini
    • 2
    • 3
    • 4
    • 5
  • Andrew Waldron
    • 6
  1. 1.Department of MathematicsThe University of AucklandAucklandNew Zealand
  2. 2.Institut für MathematikUniversität Zürich-IrchelZurichSwitzerland
  3. 3.INFN, Laboratori Nazionali di FrascatiFrascatiItaly
  4. 4.Dipartimento di MatematicaUniversità di BolognaBolognaItaly
  5. 5.INFNSezione di BolognaBolognaItaly
  6. 6.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations