Communications in Mathematical Physics

, Volume 341, Issue 1, pp 35–103 | Cite as

Associative Algebraic Approach to Logarithmic CFT in the Bulk: The Continuum Limit of the \({\mathfrak{gl}(1|1)}\) Periodic Spin Chain, Howe Duality and the Interchiral Algebra

  • A. M. GainutdinovEmail author
  • N. Read
  • H. Saleur


We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed \({\mathfrak{gl}(1|1)}\) spin-chain and its continuum limit—the \({c=-2}\) symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245–288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289–329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones–Temperley–Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than \({\boldsymbol{\mathcal{V}}}\), the product of the left and right Virasoro algebras. This algebra, \({\mathcal{S}}\)—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field \({S(z,\bar{z})\equiv S_{\alpha\beta} \psi^\alpha(z)\bar{\psi}^\beta(\bar{z})}\), with a symmetric form \({S_{\alpha\beta}}\) and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the \({\mathfrak{gl}(1|1)}\) spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of \({\mathfrak{sp}_{N-2}}\). The semi-simple part of JTL N is represented by \({U \mathfrak{sp}_{N-2}}\), providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over \({\mathcal{S}}\) are identified with “fundamental” representations of \({\mathfrak{sp}_\infty}\).


Spin Chain Continuum Limit Clifford Algebra Simple Module Conformal Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rohsiepe, F.: On reducible but indecomposable representations of the Virasoro algebra. arXiv:hep-th/9611160
  2. 2.
    Gaberdiel M.: Fusion in conformal field theory as the tensor product of the symmetry algebra. Int. J. Mod. Phys. A 9, 4619 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Gaberdiel M., Kausch H.: Indecomposable fusion products. Nucl. Phys. B 477, 293–318 (1996)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Mathieu P., Ridout D.: From percolation to logarithmic conformal field theory. Phys. Lett. B 657, 120 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Eberle H., Flohr M.: Virasoro representations and fusion for general augmented minimal models. J. Phys. A 39, 15245–15286 (2006)zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Pearce P., Rasmussen J., Zuber J.B.: Logarithmic minimal models. J. Stat. Mech. 0611, 017 (2006)MathSciNetGoogle Scholar
  7. 7.
    Read N., Saleur H.: Associative-algebraic approach to logarithmic conformal field theories. Nucl. Phys. B 777, 316 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Pasquier V., Saleur H.: Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys. B 330, 523 (1990)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Martin P.P.: Potts Models and Related Problems in Statistical Mechanics. World Scientific, Singapore (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Read N., Saleur H.: Enlarged symmetry algebras of spin chains, loop models, and S-matrices. Nucl. Phys. B 777, 263 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Rasmussen J., Pearce P.: Fusion algebras of logarithmic minimal models. J. Phys. A 40, 13711–13734 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Kytölä K., Ridout D.: On staggered indecomposable Virasoro modules. J. Math. Phys. 50, 123503 (2009)MathSciNetCrossRefADSzbMATHGoogle Scholar
  13. 13.
    Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Kazhdan–Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT. Theor. Math. Phys. 148, 1210–1235 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Kazhdan–Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models. J. Math. Phys. 48, 032303 (2007)MathSciNetCrossRefADSzbMATHGoogle Scholar
  15. 15.
    Bushlanov P.V., Feigin B.L., Gainutdinov A.M., Tipunin I.Yu.: Lusztig limit of quantum \({s\ell(2)}\) at root of unity and fusion of (1, p) Virasoro logarithmic minimal models. Nucl. Phys. B 818 [FS], 179–195 (2009)MathSciNetCrossRefADSzbMATHGoogle Scholar
  16. 16.
    Gaberdiel M., Runkel I.: From boundary to bulk in logarithmic CFT. J. Phys. A 41, 075402 (2008)MathSciNetCrossRefADSzbMATHGoogle Scholar
  17. 17.
    Gaberdiel M., Runkel I., Wood S.: A modular invariant bulk theory for the \({c=0}\) triplet model. J. Phys. A 44, 015204 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  18. 18.
    Kausch H.G.: Extended conformal algebras generated by a multiplet of primary fields. Phys. Lett. B 259, 448 (1991)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006)zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Saleur H., Schomerus V.: The \({GL(1|1)}\) WZW model: from supergeometry to logarithmic CFT. Nucl. Phys. B 734, 221–245 (2006)zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Saleur H., Schomerus V.: On the \({SU(2|1)}\) WZW model and its statistical mechanics applications. Nucl. Phys. B 775, 312 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Gainutdinov A.M., Read N., Saleur H.: Continuum limit and symmetries of the periodic \({\mathfrak{gl}(1|1)}\) spin chain. Nucl. Phys. B 871 [FS], 245–288 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  23. 23.
    Gainutdinov A.M., Read N., Saleur H.: Bimodule structure in the periodic \({\mathfrak{gl}(1|1)}\) spin chain. Nucl. Phys. B 871 [FS], 289–329 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  24. 24.
    Howe, R.: Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons. In: Flato, M., Sally, P., Zuckerman, G. (eds.) Applications of Group Theory in Physics and Mathematical Physics. Lectures in Applied Math., vol. 21, pp. 179–207. American Mathematical Society, Providence (1985)Google Scholar
  25. 25.
    Kausch H.: Symplectic fermions. Nucl.Phys. B 583, 513–541 (2000)zbMATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Fjelstad J., Fuchs J., Hwang S., Semikhatov A.M., Tipunin I.Yu.: Logarithmic conformal field theories via logarithmic deformations. Nucl. Phys. B 633, 379 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Read N., Saleur H.: Exact spectra of conformal supersymmetric nonlinear sigma models in two dimensions. Nucl. Phys. B 613, 409 (2001)zbMATHMathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Dubail J., Jacobsen J., Saleur H.: Conformal field theory at central charge \({c=0}\) : a measure of the indecomposability (b) parameters. Nucl. Phys. B 834, 399 (2010)zbMATHMathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Vasseur R., Jacobsen J., Saleur H.: Indecomposability parameters in chiral logarithmic conformal field theory. Nucl. Phys. B 851, 314–345 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Gainutdinov A.M., Vasseur R.: Lattice fusion rules and logarithmic operator product expansions. Nucl. Phys. B 868, 223–270 (2013)zbMATHMathSciNetCrossRefADSGoogle Scholar
  31. 31.
    Bushlanov P.V., Gainutdinov A.M., Tipunin I.Yu.: Kazhdan–Lusztig equivalence and fusion of Kac modules in Virasoro logarithmic models. Nucl. Phys. B 862, 232–269 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Graham J.J., Lehrer G.I.: The representation theory of affine Temperley–Lieb algebras. L’Ens. Math. 44, 173 (1998)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Graham J.J., Lehrer G.I.: The two-step nilpotent representations of the extended Affine Hecke algebra of type A. Compos. Math. 133, 173 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Martin P.P., Saleur H.: On an algebraic approach to higher-dimensional statistical mechanics. Commun. Math. Phys. 158, 155 (1993)zbMATHMathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Martin P.P., Saleur H.: The blob algebra and the periodic Temperley–Lieb algebra. Lett. Math. Phys. 30, 189 (1994)zbMATHMathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Gainutdinov A.M., Read N., Saleur H., Vasseur R.: The periodic \({s\ell(2|1)}\) alternating spin chain and its continuum limit as a bulk logarithmic conformal field theory at \({c=0}\). JHEP 1565, 114 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Graham J.J., Lehrer G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)zbMATHMathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants. In: Graduate Texts in Mathematics (Book 255). Springer, New York (2009)Google Scholar
  39. 39.
    Martin, P.P., McAnally, D.: On commutants, dual pairs and non-semisimple algebras from statistical mechanics. Int. J. Mod. Phys. A 7(Supp. 1B), 675 (1992)Google Scholar
  40. 40.
    Martin, P.P.: On Schur–Weyl duality, A n Hecke algebras and quantum sl(N) on \({\otimes^{n+1}{\mathbb C}^N}\). Int. J. Mod. Phys. A 7(Supp. 1B), 645 (1992)Google Scholar
  41. 41.
    Brocker, T., Dieck, T.T.: Representations of Compact Lie Groups, pp. 271–272. Springer, New York (2013)Google Scholar
  42. 42.
    Koo W.M., Saleur H.: Representations of the Virasoro algebra from lattice models. Int. J. Mod. Phys. A 8, 5165 (1993)zbMATHMathSciNetCrossRefADSGoogle Scholar
  43. 43.
    Batchelor M.T., Cardy J.: Extraordinary transition in the two-dimensional O(n) model. Nucl. Phys. B 506, 553 (1997)CrossRefADSGoogle Scholar
  44. 44.
    Gainutdinov, A.M., Saleur, H., Tipunin, I.Y.: Lattice W-algebras and logarithmic CFTs. J. Phys. A Math. Theor. 47, 495401 (2014)Google Scholar
  45. 45.
    Ottesen, J.T.: Infinite dimensional groups and algebras in quantum physics. In: Lecture Notes in Physics. Springer, New York (1995)Google Scholar
  46. 46.
    Kac, V.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1994)Google Scholar
  47. 47.
    Gainutdinov, A.M.: TheVirasoro bimodule structure of the bulk symplectic fermions LCFT (unpublished)Google Scholar
  48. 48.
    Gaberdiel M.R., Kausch H.G.: A local logarithmic conformal field theory. Nucl. Phys. B 538, 631–658 (1999)zbMATHMathSciNetCrossRefADSGoogle Scholar
  49. 49.
    Donkin, S.: The q-Schur algebra. In: London Math. Soc. Lecture Note Series, vol. 253. Cambridge University Press, Cambridge (1999)Google Scholar
  50. 50.
    Cardy J.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys. 270, 186 (1986)zbMATHMathSciNetCrossRefADSGoogle Scholar
  51. 51.
    Baake, M., Christe, Ph., Rittenberg, V.: Higher spin conserved currents in c = 1 conformally invariant systems. Nucl. Phys. B 300, 637 (1988)Google Scholar
  52. 52.
    Grimm, U., Rittenberg,V.: Themodified XXZ Heisenberg chain: conformal invariance, surface exponents of c < 1 systems and hidden symmetries of finite chains. Int. J. Mod. Phys. B 4, 969 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.DESY, Theory GroupHamburgGermany
  2. 2.Laboratoire de Mathématiques et Physique ThéoriqueUniversité de ToursToursFrance
  3. 3.Department of PhysicsYale UniversityNew HavenUSA
  4. 4.Institut de Physique ThéoriqueCEA SaclayGif Sur YvetteFrance
  5. 5.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations