Communications in Mathematical Physics

, Volume 340, Issue 3, pp 1171–1186 | Cite as

A Many-Body RAGE Theorem

Article

Abstract

We prove a generalized version of the RAGE theorem for N-body quantum systems. The result states that only bound states of systems with \({0 \leqslant n \leqslant N}\) particles persist in the long time average. The limit is formulated by means of an appropriate weak topology for many-body systems, which was introduced by the second author in a previous work, and is based on reduced density matrices. This topology is connected to the weak-* topology of states on the algebras of canonical commutation or anti-commutation relations, and we give a formulation of our main result in this setting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amrein W.O., Boutet de Monvel A., Georgescu V.: C 0-groups, commutator methods and spectral theory of N-body Hamiltonians. In: Bass, H., Oesterle, J.,Weinstein, A. (eds.) Progress in Mathematics, vol. 135. Birkhäuser, Basel (1996)Google Scholar
  2. 2.
    Amrein, W.O., Georgescu, V.: On the characterization of bound states and scattering states in quantum mechanics. Helv. Phys. Acta 46, 635–658 (1973/74)Google Scholar
  3. 3.
    Davies E.: Spectral theory and differential operators. In: Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  4. 4.
    Dereziński J.: Asymptotic completeness of long-range N-body quantum systems. Ann. Math. 138(2), 427–476 (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Dereziński J., Gérard C.: Mathematics of quantization and quantum fields. In: Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  6. 6.
    Enss V.: Asymptotic completeness for quantum mechanical potential scattering. I. Short range potentials. Commun. Math. Phys. 61, 285–291 (1978)MathSciNetCrossRefADSMATHGoogle Scholar
  7. 7.
    Graf G.M.: Anderson localization and the space-time characteristic of continuum states. J. Stat. Phys. 75, 337–346 (1994)MathSciNetCrossRefADSMATHGoogle Scholar
  8. 8.
    Grosse H., Pittner L.: On the number of unnatural parity bound states of the \({{\rm H^{-}}}\) ion. J. Math. Phys. 24, 1142–1147 (1983)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Hill R.N.: Proof that the \({{\rm H^{-}}}\) ion has only one bound state. Phys. Rev. Lett. 38, 643–646 (1977)CrossRefADSGoogle Scholar
  10. 10.
    Hill R.N.: Proof that the \({{\rm H^-}}\) ion has only one bound state. Details and extension to finite nuclear mass. J. Math. Phys. 18, 2316–2330 (1977)CrossRefADSGoogle Scholar
  11. 11.
    Hill, R.N.: Proof that the \({{\rm H^-}}\) ion has only one bound state: a review, a new result, and some related unsolved problems. In: Osterwalder, K. (ed.) Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 116, pp. 52–56. Springer, Berlin (1980)Google Scholar
  12. 12.
    Hundertmark D.: On the time-dependent approach to Anderson localization. Math. Nachr. 214, 25–38 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hunziker W., Sigal I.M.: Time-dependent scattering theory of N-body quantum systems. Rev. Math. Phys. 12, 1033–1084 (2000)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lewin M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lieb E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)CrossRefADSGoogle Scholar
  16. 16.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. III. Scattering Theory. Academic Press, New York (1979)MATHGoogle Scholar
  17. 17.
    Ruelle D.: A remark on bound states in potential-scattering theory. Nuovo Cimento A 61, 655–662 (1969)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Sigal I.M., Soffer A.: Asymptotic completeness of N-particle long-range scattering. J. Am. Math. Soc. 7, 307–334 (1994)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CNRS and CEREMADE (UMR CNRS 7534)University of Paris-DauphineParis Cedex 16France

Personalised recommendations