Communications in Mathematical Physics

, Volume 340, Issue 1, pp 253–290 | Cite as

Black Hole Instabilities and Exponential Growth

Article

Abstract

Recently, a general analysis has been given of the stability with respect to axisymmetric perturbations of stationary-axisymmetric black holes and black branes in vacuum general relativity in arbitrary dimensions. It was shown that positivity of canonical energy on an appropriate space of perturbations is necessary and sufficient for stability. However, the notions of both “stability” and “instability” in this result are significantly weaker than one would like to obtain. In particular, if there exists a perturbation with negative canonical energy, “instability” has been shown to occur only in the sense that this perturbation cannot asymptotically approach a stationary perturbation at late times. In this paper, we prove that if a perturbation of the form \({\pounds_t \delta g}\)—with \({\delta g}\) a solution to the linearized Einstein equation—has negative canonical energy, then that perturbation must, in fact, grow exponentially in time. The key idea is to make use of the t- or (t-ϕ)-reflection isometry, i, of the background spacetime and decompose the initial data for perturbations into their odd and even parts under i. We then write the canonical energy as \({\mathscr{E} = \mathscr{K} + \mathscr{U}}\), where \({\mathscr{K}}\) and \({\mathscr{U}}\), respectively, denote the canonical energy of the odd part (“kinetic energy”) and even part (“potential energy”). One of the main results of this paper is the proof that \({\mathscr{K}}\) is positive definite for any black hole background. We use \({\mathscr{K}}\) to construct a Hilbert space \({\mathscr{H}}\) on which time evolution is given in terms of a self-adjoint operator \(\tilde{\mathcal{A}}\), whose spectrum includes negative values if and only if \({\mathscr{U}}\) fails to be positive. Negative spectrum of \(\tilde{\mathcal{A}}\) implies exponential growth of the perturbations in \({\mathscr{H}}\) that have nontrivial projection into the negative spectral subspace. This includes all perturbations of the form \({\pounds_t \delta g}\) with negative canonical energy. A “Rayleigh-Ritz” type of variational principle is derived, which can be used to obtain lower bounds on the rate of exponential growth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christodoulou D., Klainerman S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, New Jersey (1993)MATHGoogle Scholar
  2. 2.
    Wald, R.M.: Note on the stability of the Schwarzschild metric. J. Math. Phys. 20(6), 1056–1058 (1979). Erratum. J. Math. Phys. 21(1), 218–218 (1980)Google Scholar
  3. 3.
    Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Clay Math. Proc. 17, 97–205. arXiv:0811.0354
  4. 4.
    Wald R.M.: On the instability of the n = 1 Einstein Yang-Mills black holes and mathematically related systems. J. Math. Phys. 33, 248–255 (1992)MATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Kay B.S., Wald R.M.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation two-sphere. Class. Quant. Grav. 4, 893–898 (1987)MATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Finster, F., Kamran, N.,Smoller, J., Yau, S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264(2), 465–503 (2006). arXiv:gr-qc/0504047
  7. 7.
    Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime (2009). arXiv:0908.2265
  8. 8.
    Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. Am. J. Math. 135(2), 361–401 (2013). arXiv:0910.5290
  9. 9.
    Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case |a| < M (2014). arXiv:1402.7034
  10. 10.
    Regge T., Wheeler J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)MATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Zerilli F.J.: Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737–738 (1970)CrossRefADSGoogle Scholar
  12. 12.
    Ishibashi, A., Kodama, H.: Stability of higher dimensional Schwarzschild black holes. Prog. Theor. Phys. 110, 901–919 (2003). arXiv:hep-th/0305185
  13. 13.
    Hollands, S., Wald, R.M.: Stability of black holes and black branes. Commun. Math. Phys. 321, 629–680 (2013). arXiv:1201.0463
  14. 14.
    Figueras, P., Murata, K., Reall, H.S.: Black hole instabilities and local Penrose inequalities. Class. Quant. Grav. 28, 225030 (2011). arXiv:1107.5785
  15. 15.
    Chrusciel, P.T., Wald, R.M.: Maximal hypersurfaces in stationary asymptotically flat spacetimes. Commun. Math. Phys. 163(3), 561–604 (1994). arXiv:gr-qc/9304009
  16. 16.
    Schiffrin, J.S., Wald, R.M.: Reflection symmetry in higher dimensional black hole spacetimes. Class. Quant. Grav. 32(10), 105005 (2015). arXiv:1501.02752
  17. 17.
    Sorkin R.: Kaluza-Klein monopole. Phys. Rev. Lett. 51, 87–90 (1983)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Gross D.J., Perry M.J.: Magnetic monopoles in Kaluza-Klein theories. Nucl. Phys. B226, 29–48 (1983)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Wald R.M.: General relativity. The University of Chicago Press, Chicago (1984)MATHCrossRefGoogle Scholar
  20. 20.
    Laval G., Mercier C., Pellat R.: Necessity of the energy principles for magnetostatic stability. Nucl. Fusion 5(2), 156 (1965)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Choquet-Bruhat Y.: General Relativity and the Einstein Equations. Oxford University Press, Oxford (2009)MATHGoogle Scholar
  22. 22.
    Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005). arXiv:gr-qc/0506013
  23. 23.
    Galloway, G.J., Schoen, R.: A Generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571–576 (2006). arXiv:gr-qc/0509107
  24. 24.
    Chrusciel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mem. Soc. Math. France 94, 1–103 (2003). arXiv:gr-qc/0301073
  25. 25.
    Cantor M., Brill D.: The Laplacian on asymptotically flat manifolds and the specification of scalar curvature. Compositio Math. 43(3), 317–330 (1981)MATHMathSciNetGoogle Scholar
  26. 26.
    Bray, H.L., Lee, D.A.: On the Riemannian Penrose inequality in dimensions less than 8. Duke Math. J. 148(1), 81–106 (2009). arXiv:0705.1128
  27. 27.
    Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971)CrossRefADSGoogle Scholar
  28. 28.
    Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, London-New York (1973)MATHCrossRefGoogle Scholar
  29. 29.
    Riesz F., Nagy B.S.: Functional Analysis. Courier Dover Publications, New York (1990)MATHGoogle Scholar
  30. 30.
    Reed M., Simon B.: Functional Analysis. Methods of Modern Mathematical Physics. Elsevier Science, Amsterdam (1981)Google Scholar
  31. 31.
    Seifert, M.D., Wald, R.M.: General variational principle for spherically symmetric perturbations in diffeomorphism covariant theories. Phys. Rev. D 75, 084029 (2007). arXiv:gr-qc/0612121
  32. 32.
    Chandrasekhar S.: Dynamical instability of Gaseous masses approaching the Schwarzschild limit in general relativity. Phys. Rev. Lett. 12, 114–116 (1964)MATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Corvino J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214(1), 137–189 (2000)MATHMathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Iyer, V., Wald, R.M.: Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D50, 846–864 (1994). arXiv:gr-qc/9403028v1

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Enrico Fermi Institute and Department of PhysicsThe University of ChicagoChicagoUSA

Personalised recommendations