Communications in Mathematical Physics

, Volume 340, Issue 2, pp 833–849 | Cite as

A Higher Frobenius–Schur Indicator Formula for Group-Theoretical Fusion Categories



Group-theoretical fusion categories are defined by data concerning finite groups and their cohomology: a finite group G endowed with a three-cocycle ω, and a subgroup \({H\subset G}\) endowed with a two-cochain whose coboundary is the restriction of ω. The objects of the category are G-graded vector spaces with suitably twisted \({H}\)-actions; the associativity of tensor products is controlled by ω. Simple objects are parametrized in terms of projective representations of finite groups, namely of the stabilizers in H of right H-cosets in G, with respect to two-cocycles defined by the initial data. We derive and study general formulas that express the higher Frobenius–Schur indicators of simple objects in a group-theoretical fusion category in terms of the group-theoretical and cohomological data defining the category and describing its simples.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bantay P.: The Frobenius–Schur indicator in conformal field theory. Phys. Lett. B 394(1–2), 87–88 (1997) ISSN: 0370-2693ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi Hopf algebras, group cohomology and orbifold models. In: Binétruy, P., Girardi, G., Sorba, P. (eds.) Nuclear Phys. B Proc. Suppl. 18B (1990). Recent Advances in Field Theory (Annecy-le-Vieux, 1990), pp. 60–72 (1991). ISSN: 0920-5632Google Scholar
  3. 3.
    Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann.Math.(2) 162(2), 581–642 (2005) ISSN:0003-486XMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fuchs, J., et al.: S 4 symmetry of 6j symbols and Frobenius–Schur indicators in rigid monoidal C * categories. J. Math. Phys. 40(1), 408–426 (1999). ISSN: 0022-2488Google Scholar
  5. 5.
    Goff C., Mason G., Ng S.-H.: On the gauge equivalence of twisted quantum doubles of elementary abelian and extra-special 2-groups. J. Algebra 312(2), 849–875 (2007) ISSN: 0021-8693MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Karpilovsky, G.: Group representations, vol. 2. North-Holland Mathematics Studies, vol. 177, pp. xvi+902. North-Holland Publishing Co., Amsterdam (1993). ISBN: 0-444-88726-1Google Scholar
  7. 7.
    Karpilovsky, G.: Group representations, vol. 3. North-Holland Mathematics Studies, vol. 180, pp. xvi+907. North-Holland Publishing Co., Amsterdam (1994). ISBN: 0-444-87433-XGoogle Scholar
  8. 8.
    Kashina, Y., Sommerhäuser, Y., Zhu, Y.: On higher Frobenius–Schur indicators. Mem. Am. Math. Soc. 181(855), viii+65 (2006). ISSN: 0065-9266Google Scholar
  9. 9.
    Linchenko, V., Montgomery, S.: A Frobenius–Schur theorem for Hopf algebras. Algebras Represent. Theory 3(4), 347–355 (2000). ISSN: 1386-923X. (Special issue dedicated to Klaus Roggenkamp on the occasion of his 60th birthday)Google Scholar
  10. 10.
    Majid S.: Quantum double for quasi-Hopf algebras. Lett. Math. Phys. 45(1), 1–9 (1998). ISSN: 0377-9017MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mason, G., Ng, S.-H.: Central invariants and Frobenius–Schur indicators for semisimple quasi-Hopf algebras. Adv. Math. 190(1), 161–195 (2005). ISSN: 0001-8708Google Scholar
  12. 12.
    Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123(2), 177–254 (1989). ISSN: 0010-3616Google Scholar
  13. 13.
    Natale, S.: Frobenius–Schur indicators for a class of fusion categories. Pac. J. Math. 221(2), 353–377 (2005). ISSN: 0030-8730Google Scholar
  14. 14.
    Ng S.-H., Schauenburg P.: Central invariants and higher indicators for semisimple quasi-Hopf algebras. Trans. Am. Math. Soc. 360(4), 1839–1860 (2008) ISSN: 0002-9947MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ng, S.-H., Schauenburg, P.: Frobenius–Schur indicators and exponents of spherical categories. Adv. Math. 211(1), 34–71 (2007). ISSN: 0001-8708Google Scholar
  16. 16.
    Ng, S.-H., Schauenburg, P.: Higher Frobenius–Schur indicators for pivotal categories. In: Kauffman, L.H., Radford, D.E., Souza, F.J.O. (eds.) Hopf Algebras and Generalizations. Contemp. Math., vol. 441, pp. 63–90. AMS, Providence (2007)Google Scholar
  17. 17.
    Nikshych, D.: Morita equivalence methods in classification of fusion categories. In: Andruskiewitsch, N., Cuadra, J., Torrecillas, B. (eds.) Hopf Algebras and Tensor Categories. Contemp. Math., vol. 585, pp. 289–325. American Mathematical Society, Providence (2013)Google Scholar
  18. 18.
    Nikshych D.: Non-group-theoretical semisimple Hopf algebras from group actions on fusion categories. Sel. Math. (N.S.) 14(1), 145–161 (2008) ISSN: 1022-1824MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ostrik, V.: Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not. 27, 1507–1520 (2003). ISSN: 1073-7928Google Scholar
  20. 20.
    Schauenburg, P.: Computing higher Frobenius–Schur indicators in fusion categories constructed from inclusions of finite groups. Pac. J. Math. arXiv:1502.02314 [math.QA]
  21. 21.
    Schauenburg P.: Hopf bimodules, coquasibialgebras, and an exact sequence of Kac. Adv. Math. 165(2), 194–263 (2002)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Schauenburg, P.: Hopf modules and the double of a quasi-Hopf algebra. Trans. Am. Math. Soc. 354(8), 3349–3378 (2002)Google Scholar
  23. 23.
    Schauenburg, P.: The monoidal center construction and bimodules. J. Pure Appl. Algebra 158(2–3), 325-346 (2001). ISSN: 0022-4049Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut de Mathématiques de Bourgogne, UMR 5584 CNRSUniversité Bourgogne Franche-ComtéDijonFrance

Personalised recommendations