Communications in Mathematical Physics

, Volume 342, Issue 1, pp 151–187 | Cite as

Relating the Bures Measure to the Cauchy Two-Matrix Model



The Bures metric is a natural choice in measuring the distance of density operators representing states in quantum mechanics. In the past few years a random matrix ensemble and the corresponding joint probability density function of its eigenvalues was identified. Moreover, a relation with the Cauchy two-matrix model was discovered but never thoroughly investigated, leaving open in particular the following question: How are the kernels of the Pfaffian point process of the Bures random matrix ensemble related to the ones of the determinantal point process of the Cauchy two-matrix model, and moreover, how can it be possible that a Pfaffian point process derives from a determinantal point process? We give a very explicit answer to this question. The aim of our work has a quite practical origin since the calculation of the level statistics of the Bures ensemble is highly mathematically involved while we know the statistics of the Cauchy two-matrix ensemble. Therefore, we solve the whole level statistics of a density operator drawn from the Bures prior.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013). arXiv:1304.1163 [quant-ph]
  2. 2.
    Akemann, G., Baik, J., Di Francesco, P. (Eds.): The Oxford Handbook of Random Matrix Theory. 1st edn. Oxford University Press, Oxford (2011)Google Scholar
  3. 3.
    Akemann, G., Burda, Z.: Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A 45, 465201 (2012). arXiv:1208.0187 [math-ph]
  4. 4.
    Akemann, G., Burda, Z., Kieburg, M., Nagao, T.: Universal microscopic correlation functions for products of truncated unitary matrices. J. Phys. A 47, 255202 (2013). arXiv:1310.6395 [math-ph]
  5. 5.
    Akemann, G., Ipsen, J., Kieburg, M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013). arXiv:1307.7560 [math-ph]
  6. 6.
    Akemann, G., Ipsen, J.R., Strahov, E.: Permanental processes from products of complex and quaternionic induced Ginibre ensembles. Random Matrices: Theor. Appl. 3(4), 1450014 (2014). arXiv:1404.4583 [math-ph]
  7. 7.
    Akemann, G., Kieburg, M., Philips, M.J.: Skew-orthogonal Laguerre polynomials for chiral real asymmetric random matrices. J. Phys. A 43, 375207 (2010). arXiv:1005.2983 [math-ph]
  8. 8.
    Akemann, G., Kieburg, M., Wei, L.: Singular value correlation functions for products of Wishart random matrices. J. Phys. A 46, 275205 (2013). arXiv:1303.5694 [math-ph]
  9. 9.
    Akemann, G., Burda, Z., Kieburg, M.: Universal distribution of Lyapunov exponents for products of Ginibre matrices. J. Phys. A 47, 395202 (2014). arXiv:1406.0803 [math-ph]
  10. 10.
    Andréief K.A.: Notes sur une relation les intégrales définies des produits des fonctions. Mém. de la Soc. Sci. Bordeaux 2, 1 (1883)Google Scholar
  11. 11.
    Baik, J., Deift, P., Strahov, E.: Products and ratios of characteristic polynomials of random Hermitian matrices. J. Math. Phys. 44, 3657 (2003). arXiv:math-ph/0304016
  12. 12.
    Basor E.L., Forrester P.J.: Formulas for the evaluation of Toeplitz determinants with rational generating functions. Math. Nachr. 170, 5 (1994)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Berezin F.A.: Introduction to Superanalysis. 1st edn. D. Reidel Publishing Company, Dordrecht (1987)CrossRefMATHGoogle Scholar
  14. 14.
    Bertola, M., Gekhtman, M., Szmigielski, J.: The Cauchy two-matrix model. Commun. Math. Phys. 287, 983 (2009). arXiv:0804.0873 [math-ph]
  15. 15.
    Bertola, M., Gekhtman, M., Szmigielski, J.: Cauchy Biorthogonal Polynomials. J. Approx. Theory 162, 832 (2010). arXiv:0904.2602 [math-ph]
  16. 16.
    Bertola, M., Gekhtman, M., Szmigielski, J.: Cauchy-Laguerre two-matrix model and the Meijer-G random point field. Commun. Math. Phys. 326, 111 (2014). arXiv:1211.5369 [math.PR]
  17. 17.
    Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704 (1998). arXiv:math/9804027
  18. 18.
    Borodin, A., Strahov, E.: Averages of characteristic polynomials in random matrix theory. Comm. Pure Appl. Math. 59, 161 (2006). arXiv:math-ph/0407065
  19. 19.
    Borot, G., Nadal, C.: Purity distribution for generalized random Bures mixed states. J. Phys. A 45, 075209 (2012). arXiv:1110.3838 [cond-mat.stat-mech]
  20. 20.
    de Bruijn N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. 19, 133 (1955)MathSciNetMATHGoogle Scholar
  21. 21.
    Bromley, T.R., Cianciaruso, M., Lo Franco, R., Adesso, G.: Unifying approach to the quantification of bipartite correlations by Bures distance. J. Phys. A 47, 405302 (2014). arXiv:1404.1409 [quant-ph]
  22. 22.
    Burda, Z.: Free products of large random matrices—a short review of recent developments. J. Phys. Conf. Ser. 473, 012002 (2013). arXiv:1309.2568 [math-ph]
  23. 23.
    Burda, Z., Janik, R.A., Waclaw, B.: Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E 81, 041132 (2010). arXiv:0912.3422 [cond-mat.stat-mech]
  24. 24.
    Burda, Z., Jarosz, A., Livan, G., Nowak, M.A., Swiech, A.: Eigenvalues and singular values of products of rectangular Gaussian random matrices. Phys. Rev. E 82, 061114 (2010). arXiv:1007.3594 [cond-mat.stat-mech]
  25. 25.
    Burda, Z., Jarosz, A., Livan, G., Nowak, M.A., Swiech, A.: Eigenvalues and singular values of products of rectangular Gaussian random matrices (The Extended Version). Acta Phys. Polon. B 42, 939 (2011). arXiv:1103.3964 [cond-mat.stat-mech]
  26. 26.
    Burda, Z., Livan, G., Swiech, A.: Commutative law for products of infinitely large isotropic random matrices. Phys. Rev. E 88, 022107 (2013). arXiv:1303.5360 [cond-mat.stat-mech]
  27. 27.
    Burda, Z., Nowak, M.A., Swiech, A.: New spectral relations between products and powers of isotropic random matrices. Phys. Rev. E 86, 061137 (2012). arXiv:1205.1625 [cond-mat.stat-mech]
  28. 28.
    Bures D.J.C.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-algebras. Trans. Am. Math. Soc. 135, 199 (1969)MathSciNetMATHGoogle Scholar
  29. 29.
    Eremeev, V., Ciobanu, N., Orszag, M.: Thermal effects on the sudden changes and freezing of correlations between remote atoms in cavity QED network. Opt. Lett. 39, 2668-2671 (2014). arXiv:1402.2152 [quant-ph]
  30. 30.
    Eynard, B.: Asymptotics of skew orthogonal polynomials. J. Phys. A. 34, 7591 (2001). arXiv:cond-mat/0012046
  31. 31.
    Forrester P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)MATHGoogle Scholar
  32. 32.
    Forrester, P.J.: Lyapunov exponents for products of complex Gaussian random matrices. J. Stat. Phys. 151, 796 (2013). arXiv:1206.2001 [math-ph]
  33. 33.
    Forrester, P.J.: Probability of all eigenvalues real for products of standard Gaussian matrices. J. Phys. A 47, 065202 (2014). arXiv:1309.7736 [math-ph]
  34. 34.
    Forrester, P.J.: Eigenvalue statistics for product complex Wishart matrices. J. Phys. A 47, 345202 (2014). arXiv:1401.2572 [math-ph]
  35. 35.
    Forrester, P.J., Liu, D.-Z.: Raney distribution and random matrix theory. J. Stat. Phys. 158, 1051–1082 (2015). arXiv:1404.5759
  36. 36.
    Gradshtein I.I.S., Ryzhik I.I.M., Jeffrey A.: Table on Integrals, Series, and Products. Academic Press, San Diego, CA (2000)Google Scholar
  37. 37.
    Gong, J.-M., Tang, Q., Sun, Y.-H., Qiao, L.: Enhancing the geometric quantum discord in the Heisenberg XX chain by Dzyaloshinsky–Moriya interaction. Physica B. Condens. Matter 461, 70–74 (2015). arXiv:1410.6923 [quant-ph]
  38. 38.
    Hall, M.J.W.: Random quantum correlations and density operator distributions. Phys. Lett. A 242, 123 (1998). arXiv:quant-ph/9802052
  39. 39.
    Hu, M.-L., Tian, D.-P.: Preservation of the geometric quantum discord in noisy environments. Ann. Phys. 343, 132 (2014). arXiv:1402.0301 [quant-ph]
  40. 40.
    Hübner M.: Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163, 239 (1992)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Hübner M.: Computation of Uhlamm’s parallel transport for density matrices and the Bures metric on three-dimensional Hilbert space. Phys. Lett. A 179, 4 (1993)Google Scholar
  42. 42.
    Ipsen, J.R.: Products of independent quaternion Ginibre matrices and their correlation functions. J. Phys. A 46, 265201 (2013). arXiv:1301.3343 [math-ph]
  43. 43.
    Ipsen, J.R., Kieburg, M.: Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Phys. Rev. E 89, 032106 (2014). arXiv:1310.4154 [math-ph]
  44. 44.
    Ishikawa M., Okanda S., Tagawa H., Zeng J.: Generalizations of Cauchy’s determinant and Schur’s Pfaffians. Linear Multilinear Algebra 39, 251 (1995)CrossRefGoogle Scholar
  45. 45.
    Kieburg, M.: Mixing of orthogonal and skew-orthogonal polynomials and its relation to Wilson RMT. J. Phys. A 45, 205203 (2012). arXiv:1202.1768 [math-ph]
  46. 46.
    Kieburg, M., Guhr, T.: Derivation of determinantal structures for random matrix ensembles in a new way. J. Phys. A 43, 075201 (2010). arXiv:0912.0654 [math-ph]
  47. 47.
    Kieburg, M., Guhr, T.: A new approach to derive Pfaffian structures for random matrix ensembles. J. Phys. A 43, 135204 (2010). arXiv:0912.0658 [math-ph]
  48. 48.
    Kostov I.K.: O(n) vector model on a planar random lattice: spectrum of anomalous dimensions. Mod. Phys. Lett. A 4, 217 (1989)CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Kuijlaars, A.B.J., Stivigny, D.: Singular values of products of random matrices and polynomial ensembles. Random Matrices: Theor. Appl. 03, 1450011 (2014). arXiv:1404.5802 [math-ph]
  50. 50.
    Kuijlaars, A.B.J., Zhang, L.: Singular values of products of Gaussian random matrices, multiple orthogonal polynomials and hard edge scaling limits. Commun. Math. Phys. 332, 759 (2014). arXiv:1404.5802 [math.PR]
  51. 51.
    Liu, D.-Z., Zhou, D.-S.: Local statistical properties of Schmidt eigenvalues of bipartite entanglement for a random pure state. Int. Math. Res. Not. 2011, 725 (2011). arXiv:0912.3999 [math-ph]
  52. 52.
    Mehta M.L.: Random Matrices. 3rd edn. Academic Press Inc., New York (2004)MATHGoogle Scholar
  53. 53.
    Młtokowski, W., Penson, K.A.,  Życzkowski, K.: Densities of the Raney distributions. Documenta Math. 18), 1573 (2013). arXiv:1211.7259 [math.PR]
  54. 54.
    Młotkowski, W., Nowak, M.A., Penson, K.A.,  Życzkowski, K.: Spectral density of generalized Wishart matrices and free multiplicative convolution (2014). arXiv:1407.1282 [math-ph]
  55. 55.
    Neuschel, T.: Plancherel–Rotach formulae for average characteristic polynomials of products of Ginibre random matrices and the Fuss–Catalan distribution. Random Matrices: Theor. Appl. 03, 1450003 (2014). arXiv:1311.0365 [math.CA]
  56. 56.
    Neuschel, T., Stivigny, D.: Asymptotics for characteristic polynomials of Wishart type products of complex Gaussian and truncated unitary random matrices (2014). arXiv:1407.2755 [math.CA]
  57. 57.
    Orszag, M., Ciobanu, N., Coto, R., Eremeev, V.: Quantum correlations in cavity QED networks. J. Mod. Opt. 62(8). (2015). arXiv:1407.5589 [quant-ph]
  58. 58.
    Osipov, V.A., Sommers, H.-J.,  Życzkowski, K.: Random Bures mixed states and the distribution of their purity. J. Phys. A 43, 055302 (2010). arXiv:0909.5094 [cond-mat.stat-mech]
  59. 59.
    Paris, M.G.A., Genoni, M.G., Shammah, N., Teklu, B.: Quantifying the nonlinearity of a quantum oscillator. Phys. Rev. A 90, 012104 (2014). arXiv:1405.0955 [quant-ph]
  60. 60.
    Penson, K.A.,  Życzkowski, K.: Product of Ginibre matrices: Fuss–Catalan and Raney distributions. Phys. Rev. E 83, 061118 (2011). arXiv:1103.3453 [math-ph]
  61. 61.
    Prudnikov A.A.P., Brychkov Y.A., Brychkov I.U.A., Maričev O.I.: Integrals and Series, Vol. 3: More Special Functions. Gordon and Breach Science Publishers, London (1990)Google Scholar
  62. 62.
    Rains, E.M.: Correlations for symmetrized increasing subsequences (2000). arXiv:math/0006097 [math.CO]
  63. 63.
    Roga, W., Giampaolo, S.M., Illuminati, F.: Discord of response. J. Phys. A 47, 365301 (2014). arXiv:1401.8243 [quant-ph]
  64. 64.
    Schmied, R.: Quantum State Tomography of a Single Qubit: Comparison of Methods (2014). arXiv:1407.4759 [quant-ph]
  65. 65.
    Slater, P.B.: Volumes and hyperareas of the spaces of separable and nonseparable qubit–qutrit systems: initial numerical analyses (2004). arXiv:quant-ph/0405114
  66. 66.
    Slater, P.B.: Qubit–qutrit separability-probability ratios. Phys. Rev. A 71, 052319 (2005). arXiv:quant-ph/0410238
  67. 67.
    Slater, P.B.: Bures and Hilbert–Schmidt 2 × 2 determinantal moments. J. Phys. A 45, 455303 (2012). arXiv:1207.1297 [quant-ph]
  68. 68.
    Sommers, H.-J.,  Życzkowski, K.: Bures volume of the set of mixed quantum states. J. Phys. A 36, 10083 (2003). arXiv:quant-ph/0304041
  69. 69.
    Sommers, H.-J.,  Życzkowski, K.: Statistical properties of random density matrices. J. Phys. A 37, 8457 (2004). arXiv:quant-ph/0405031
  70. 70.
    Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013). arXiv:1304.3334 [quant-ph]
  71. 71.
    Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance: the qubit case. J. Phys. A 47, 035302 (2014). arXiv:1308.5005 [quant-ph]
  72. 72.
    Strahov, E.: Differential equations for singular values of products of Ginibre random matrices. J. Phys. A: Math. Theor. 47, 325203 (2014). arXiv:1403.6368 [math-ph]
  73. 73.
    Strahov, E., Fyodorov, Y.V.: Universal results for correlations of characteristic polynomials: Riemann–Hilbert approach. Commun. Math. Phys. 241, 343 (2003). arXiv:math-ph/0210010
  74. 74.
    Zhang, L.: A note on the limiting mean distribution of singular values for products of two Wishart random matrices. J. Math. Phys. 54, 083303 (2013). arXiv:1305.0726 [math-ph]

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia
  2. 2.Fakultät für PhysikUniversität Bielefeld, Postfach 100131BielefeldGermany

Personalised recommendations