Communications in Mathematical Physics

, Volume 339, Issue 3, pp 1021–1061 | Cite as

Bilinear Equations on Painlevé τ Functions from CFT

  • M. A. Bershtein
  • A. I. Shchechkin


In 2012, Gamayun, Iorgov, and Lisovyy conjectured an explicit expression for the Painlevé VI τ function in terms of the Liouville conformal blocks with central charge c = 1. We prove that the proposed expression satisfies Painlevé VI τ function bilinear equations (and therefore prove the conjecture). The proof reduces to the proof of bilinear relations on conformal blocks. These relations were studied using the embedding of a direct sum of two Virasoro algebras into a sum of Majorana fermion and Super Virasoro algebra. In the framework of the AGT correspondence, the bilinear equations on the conformal blocks can be interpreted in terms of instanton counting on the minimal resolution of \({\mathbb{C}^2/\mathbb{Z}_2}\) (similarly to Nakajima–Yoshioka blow-up equations).


Central Charge Vertex Operator Conformal Block Vertex Operator Algebra Verma Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba V.A., Fateev V.A., Litvinov A.V., Tarnopolsky G.M.: On combinatorial expansion of the conformal blocks arising from AGT conjecture. Lett. Math. Phys. 98, 33–64 (2011) arXiv:1012.1312 CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010) arXiv:0906.3219 CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Belavin A., Bershtein M., Feigin B., Litvinov A., Tarnopolsky G.: Instanton moduli spaces and bases in coset conformal field theory. Commun. Math. Phys. 319(1), 269–301 (2013) arXiv:1111.2803 CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Belavin A., Polyakov A., Zamolodchikov A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333 (1984)CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Belavin V.A.: \({\mathcal{N}=1}\) SUSY conformal block recursive relations. Theor. Math. Phys. 152, 1275 (2007) arXiv:hep-th/0611295 CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Belavin, V.A.: On the N = 1 super Liouville four-point functions, Nucl. Phys. B 798, 423 (2008). arXiv:0705.1983
  7. 7.
    Belavin, V., Feigin, B.: Super Liouville conformal blocks from \({\mathcal{N}=2}\) SU(2) quiver gauge theories. JHEP 1107, 079 (2011). arXiv:1105.5800
  8. 8.
    Bershtein, M., Feigin, B., Litvinov, A.: Coupling of two conformal field theories and Nakajima–Yoshioka blow-up equations. arXiv:1310.7281
  9. 9.
    Bonelli, G., Maruyoshi, K., Tanzini, A.: Instantons on ALE spaces and super liouville conformal field theories. JHEP 1108, 056 (2011). arXiv:1106.2505
  10. 10.
    Bonelli, K., Maruyoshi, G., Tanzini, A.: Gauge theories on ALE space and super liouville correlation functions. Lett. Math. Phys. 101, 103–124 (2012). arXiv:1107.4609
  11. 11.
    Bruzzo, U., Pedrini, M., Sala, F., Szabo, R.J.: Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces. arXiv:1312.5554
  12. 12.
    Crnkovic C., Paunov R., Sotkov G., Stanishkov M.: Fusions of conformal models. Nucl. Phys. B 336, 637 (1990)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Feigin, B., Fuchs, D.: Representations of the Virasoro algebra. In: Representations of Lie Groups and Related Topics, vol. 465. Advanced Studies in Contemporary Mathematics, vol. 7. Gordon and Breach, New York (1990)Google Scholar
  14. 14.
    Frenkel E., Ben-Zvi D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence (2004)CrossRefGoogle Scholar
  15. 15.
    Gaiotto D.: Asymptotically free N = 2 theories and irregular conformal blocks. J. Phys. Conf. Ser. 462, 012014 (2013)CrossRefGoogle Scholar
  16. 16.
    Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. JHEP 1210, 38 (2012). arXiv:1207.0787
  17. 17.
    Gamayun, O., Iorgov, N., Lisovyy, O.: How instanton combinatorics solves Painlevé VI, V and III’s. J. Phys. A Math. Theor. 46, 335203 (2013). arXiv:1302.1832
  18. 18.
    Hadasz, L., Jasklski, Z.: Super-Liouville—double Liouville correspondence. JHEP 1405, 124 (2014). arXiv:1312.4520
  19. 19.
    Hadasz, L., Jaskólski, Z., Suchanek, P.: Recursion representation of the Neveu–Schwarz superconformal block. JHEP 0703, 032 (2007). arXiv:hep-th/0611266
  20. 20.
    Iorgov N., Lisovyy O., Shchechkin A., Tykhyy Yu.: Painlevé functions and conformal blocks. Constr. Approx. 39, 255–272 (2014)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Iorgov N., Lisovyy O., Teschner J.: Isomonodromic τ functions from Liouville conformal blocks. Commun. Math. Phys. 336(2), 671–694 (2015)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Iorgov, N., Lisovyy, O., Tykhyy, Y.: Painlevé VI connection problem and monodromy of c =  1 conformal blocks. JHEP 1312, 029 (2013). arXiv:1308.4092
  23. 23.
    Its, A., Lisovyy, O., Tykhyy, Y.: Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks. Int. Math. Res. Not. arXiv:1403.1235
  24. 24.
    Lashkevich M.: Superconformal 2-D minimal models and an unusual coset construction. Mod. Phys. Lett. A 8, 851–860 (1993) arXiv:hep-th/93010932 CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Litvinov, A., Lukyanov, S., Nekrasov, N., Zamolodchikov, A.: Classical conformal blocks and Painlevé VI. JHEP 1407, 144 (2014). arXiv:1309.4700
  26. 26.
    Nakajima H., Yoshioka K.: Instanton counting on blowup. I. 4-dimensional pure gauge theory. Invent. Math. 162, 313–355 (2005) arXiv:math/0306198 CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Ohyama Y., Kawamuko H., Sakai H., Okamoto K.: Studies on the Painlevé equations, V, third Painlevé equations of special type P III(D 7) and P III(D 8). J. Math. Sci. Univ. Tokyo 13, 145–204 (2006)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Teschner, J.: On the Liouville three-point function. Phys. Lett. B 363, 63 (1995). arXiv:hep-th/9507109
  29. 29.
    Teschner, J.: A lecture on the Liouville vertex operators. Int. J. Mod. Phys. A 19S2, 436–458 (2004). arXiv:hep-th/0303150
  30. 30.
    Zamolodchikov Al.: Conformal symmetry in two dimensions: an explicit recurrence formula for the conformal partial wave amplitude. Commun. Math. Phys. 96, 419–422 (1984)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Zamolodchikov, A.B., Zamolodchikov, A.B.: Conformal Field Theory and Critical Phenomena in Two-Dimensional Systems. Soviet Scientific Reviews Section A, vol. 10, Pt. 4, pp. 269–433. Harwood, London (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Institute for Information Transmission ProblemsMoscowRussia
  3. 3.International Laboratory of Representation Theory and Mathematical PhysicsNational Research University Higher School of EconomicsMoscowRussia
  4. 4.Independent University of MoscowMoscowRussia
  5. 5.Department of PhysicsTaras Shevchenko National University of KievKievUkraine
  6. 6.Bogolyubov Institute for Theoretical PhysicsKievUkraine

Personalised recommendations