Communications in Mathematical Physics

, Volume 339, Issue 3, pp 1167–1245

Spectral Theory for Interacting Particle Systems Solvable by Coordinate Bethe Ansatz

  • Alexei Borodin
  • Ivan Corwin
  • Leonid Petrov
  • Tomohiro Sasamoto
Article

Abstract

We develop spectral theory for the q-Hahn stochastic particle system introduced recently by Povolotsky. That is, we establish a Plancherel type isomorphism result that implies completeness and biorthogonality statements for the Bethe ansatz eigenfunctions of the system. Owing to a Markov duality with the q-Hahn TASEP (a discrete-time generalization of TASEP with particles’ jump distribution being the orthogonality weight for the classical q-Hahn orthogonal polynomials), we write down moment formulas that characterize the fixed time distribution of the q-Hahn TASEP with general initial data. The Bethe ansatz eigenfunctions of the q-Hahn system degenerate into eigenfunctions of other (not necessarily stochastic) interacting particle systems solvable by the coordinate Bethe ansatz. This includes the ASEP, the (asymmetric) six-vertex model, and the Heisenberg XXZ spin chain (all models are on the infinite lattice). In this way, each of the latter systems possesses a spectral theory, too. In particular, biorthogonality of the ASEP eigenfunctions, which follows from the corresponding q-Hahn statement, implies symmetrization identities of Tracy and Widom (for ASEP with either step or step Bernoulli initial configuration) as corollaries. Another degeneration takes the q-Hahn system to the q-Boson particle system (dual to q-TASEP) studied in detail in our previous paper (2013). Thus, at the spectral theory level we unify two discrete-space regularizations of the Kardar–Parisi–Zhang equation/stochastic heat equation, namely, q-TASEP and ASEP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011). arXiv:1003.0443 [math.PR]
  2. 2.
    Babbitt D., Gutkin E.: The Plancherel formula for the infinite XXZ Heisenberg spin chain. Lett. Math. Phys. 20, 91–99 (1990)CrossRefADSMathSciNetMATHGoogle Scholar
  3. 3.
    Babbitt D.L., Thomas.: Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. II. An explicit Plancherel formula. Commun. Math. Phys. 54, 255–278 (1977)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Barraquand, G.: A short proof of a symmetry identity for the \({(q,\mu,\nu)}\) -deformed Binomial distribution. Electron. Commun. Probab. 19(50), 1–3 (2014). arXiv:1404.4265 [math.PR]
  5. 5.
    Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Courier Dover Publications, Mineola (2007)Google Scholar
  6. 6.
    Bertini L.N. Cancrini: The stochastic heat equation: Feynman–Kac formula and intermittence. J. Stat. Phys. 78(5–6), 1377–1401 (1995)CrossRefADSMathSciNetMATHGoogle Scholar
  7. 7.
    Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bethe H.: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette (On the theory of metals. I. Eigenvalues and eigenfunctions of the linear atom chain). Zeitschrift fur Physik 71, 205–226 (1931)CrossRefADSGoogle Scholar
  9. 9.
    Borodin, A., Corwin, I.: Discrete time q-TASEPs. Intern. Math. Res. Notices (2013). arXiv:1305.2972 [math.PR]. doi:10.1093/imrn/rnt206
  10. 10.
    Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158(1–2), 225–400 (2014). arXiv:1111.4408 [math.PR]
  11. 11.
    Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimension. Commun. Pure Appl. Math. 67(7), 1129–1214 (2014). arXiv:1204.1024 [math.PR]
  12. 12.
    Borodin, A., Corwin, I., Ferrari, P., Veto, B.: Height fluctuations for the stationary KPZ equation (2014). arXiv:1407.6977 [math.PR]
  13. 13.
    Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. (2014). arXiv:1407.6729 [math.PR]
  14. 14.
    Borodin, A., Corwin, I., Gorin, V., Shakirov, S.: Observables of Macdonald processes (2013). arXiv:1306.0659 [math.PR]
  15. 15.
    Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for the q-Boson particle system. Composit. Math. 151(1), 1–67 (2015). arXiv:1308.3475 [math-ph]
  16. 16.
    Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. Ann. Probab. 42(6), 2314–2382 (2014). arXiv:1207.5035 [math.PR]
  17. 17.
    Borodin, A., Petrov, L.: Nearest neighbor Markov dynamics on Macdonald processes. Adv. Math. (2013, to appear). arXiv:1305.5501 [math.PR]
  18. 18.
    Borodin, A., Petrov, L.: Integrable probability: From representation theory to Macdonald processes. Probab. Surv. 11, 1–58 (2014). arXiv:1310.8007 [math.PR]
  19. 19.
    Calabrese, P., Caux, J.S.: Dynamics of the attractive 1D Bose gas: analytical treatment from integrability. J. Stat. Mech. P08032 (2007)Google Scholar
  20. 20.
    Calabrese P., Le Doussal P., Rosso A.: Free-energy distribution of the directed polymer at high temperature. Eur. Phys. Lett. 90(2), 20002 (2010)CrossRefADSGoogle Scholar
  21. 21.
    Carinci, G., Giardinà à, C., Redig, F., Sasamoto, T.: A generalized asymmetric exclusion process with \({U_q(\mathfrak{sl}_2)}\) stochastic duality (2014). arXiv:1407.3367 [math.PR]
  22. 22.
    Corwin, I.: The q-Hahn Boson process and q-Hahn TASEP. Int. Math. Res. Notices (2014). arXiv:1401.3321 [math.PR]. doi:10.1093/imrn/rnu094
  23. 23.
    Corwin, I., Quastel, J.: Crossover distributions at the edge of the rarefaction fan. Ann. Probab. 41(3A), 1243–1314 (2013). arXiv:1006.1338 [math.PR]
  24. 24.
    Dotsenko, V.: Bethe ansatz derivation of the Tracy–Widom distribution for one-dimensional directed polymers. Eur. Phys. Lett. 90(20003) (2010)Google Scholar
  25. 25.
    Dotsenko, V.: Universal randomness. Physics-Uspekhi 54(3), 259–280, (2011). arXiv:1009.3116 [cond-mat.stat-mech]
  26. 26.
    Faddeev, L.: How Algebraic Bethe Ansatz works for integrable model. Les-Houches lectures (1996). arXiv:hep-th/9605187
  27. 27.
    Ferrari, P., Veto, B.: Tracy–Widom asymptotics for q-TASEP. Ann. Inst. Henri Poincar Probab. Stat. (2013, to appear). arXiv:1310.2515 [math.PR]
  28. 28.
    Gaudin M.: Boundary energy of a Bose gas in one dimension. Phys. Rev. A 4, 386–394 (1971)CrossRefADSGoogle Scholar
  29. 29.
    Gutkin, E.: Heisenberg-Ising spin chain: Plancherel decomposition and Chebyshev polynomials. Calogero–Moser–Sutherland Models. CRM Series in Mathematical Physics, pp. 177–192 (2000)Google Scholar
  30. 30.
    Gwa L.-H.H. Spohn: Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. Phys. Rev. A 46, 844–854 (1992)CrossRefADSGoogle Scholar
  31. 31.
    Heckman G.J., Opdam E.M.: Yang’s system of particles and Hecke algebras. Ann. Math. 145(1), 139–173 (1997)CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Helgason S.: An analogue of the Paley–Wiener theorem for the Fourier transform on certain symmetric spaces. Math. Ann. 165, 297–308 (1966)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Imamura T., Sasamoto T., Spohn H.: KPZ, ASEP and Delta-Bose gas. J. Phys. Conf. Ser. 297, 012–016 (2011)CrossRefGoogle Scholar
  34. 34.
    Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Tech. report, Delft University of Technology and Free University of Amsterdam (1996)Google Scholar
  35. 35.
    Korhonen, M., Lee, E.: The transition probability and the probability for the left-most particle’s position of the q-TAZRP. J. Math. Phys. 55, 013301 (2013). arXiv:1308.4769 [math-ph]
  36. 36.
    Lieb E.H.: The residual entropy of square ice. Phys. Rev. 162, 162–172 (1967)CrossRefADSGoogle Scholar
  37. 37.
    Lieb E.H., Liniger W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. Lett. 130, 1605–1616 (1963)ADSMathSciNetGoogle Scholar
  38. 38.
    Liggett T.: Interacting Particle Systems. Springer, New York (1985)CrossRefMATHGoogle Scholar
  39. 39.
    Macdonald, I.G.: Spherical functions of p-adic type. Publ. Ramanujan Inst. 2 (1971)Google Scholar
  40. 40.
    Macdonald I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)MATHGoogle Scholar
  41. 41.
    Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sem. Lothar. Combin. 45(B45a) (2000)Google Scholar
  42. 42.
    Matveev, K., Petrov, L.: q-randomized Robinson–Schensted–Knuth correspondences and random polymers (2015). arXiv:1504.00666 [math.PR]
  43. 43.
    Moreno Flores, G.R., Quastel, J., Remenik, D.: In preparation (2015)Google Scholar
  44. 44.
    O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012). arXiv:0910.0069 [math.PR]
  45. 45.
    O’Connell, N., Pei, Y.: A q-weighted version of the Robinson-Schensted algorithm. Electron. J. Probab. 18(95), 1–25 (2013). arXiv:1212.6716 [math.CO]
  46. 46.
    O’Connell N., Yor M.: Brownian analogues of Burke’s theorem. Stoch. Proc. Appl. 96(2), 285–304 (2001)CrossRefMathSciNetMATHGoogle Scholar
  47. 47.
    Oxford, S.: The Hamiltonian of the quantized nonlinear Schrödinger equation. Ph.D. thesis, UCLA (1979)Google Scholar
  48. 48.
    Povolotsky, A.: On integrability of zero-range chipping models with factorized steady state. J. Phys. A 46(465205) (2013). arXiv:1308.3250 [math-ph]
  49. 49.
    Povolotsky, A., Priezzhev, V.: Determinant solution for the totally asymmetric exclusion process with parallel update. J. Stat. Mech. 7, P07002 (2006)Google Scholar
  50. 50.
    Prolhac, S., Spohn, H.: The propagator of the attractive delta-Bose gas in one dimension. J. Math. Phys. 52, 122106 (2011). arXiv:1109.3404 [math-ph]
  51. 51.
    Reshetikhin, N.: Lectures on the integrability of the 6-vertex model. Lect. Notes Les Houches Summer School 89, 197–266 (2008). arXiv:1010.5031 [math-ph]
  52. 52.
    Sasamoto T., Wadati M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31, 6057–6071 (1998)CrossRefADSMathSciNetMATHGoogle Scholar
  53. 53.
    Schütz G.: Duality relations for asymmetric exclusion processes. J. Stat. Phys. 86, 12651287 (1997)CrossRefGoogle Scholar
  54. 54.
    Schütz G.: Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88, 427–445 (1997)CrossRefGoogle Scholar
  55. 55.
    Spitzer F.: Interaction of Markov processes. Adv. Math. 5(2), 246–290 (1970)CrossRefMathSciNetMATHGoogle Scholar
  56. 56.
    Takeyama, Y.: A deformation of affine Hecke algebra and integrable stochastic particle system. J. Phys. A 47(46), 465203 (2014). arXiv:1407.1960 [math-ph]
  57. 57.
    Takeyama, Y.: A discrete analogoue of period delta Bose gas and affine Hecke algebra. Funkcialaj Ekvacioj 57(1), 107–118 (2014). arXiv:1209.2758 [math-ph]
  58. 58.
    Tracy, C., Widom, H.: A Fredholm determinant representation in ASEP. J. Stat. Phys. 132(2), 291–300 (2008). arXiv:0804.1379 [math.PR]
  59. 59.
    Tracy, C., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815–844 (2008). arXiv:0704.2633 [math.PR] [Erratum: Commun. Math. Phys. 304, 875–878 (2011)]
  60. 60.
    Tracy, C., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009). arXiv:0807.1713 [math.PR]
  61. 61.
    Tracy, C., Widom, H.: On ASEP with step Bernoulli initial condition. J. Stat. Phys. 137, 825–838 (2009). arXiv:0907.5192 [math.PR]
  62. 62.
    Tracy, C., Widom, H.: Total current fluctuations in ASEP. J. Math. Phys. 50(9), 095–204 (2009). arXiv:0902.0821 [math.PR]
  63. 63.
    Van Diejen J.F.: On the Plancherel formula for the (discrete) Laplacian in a Weyl chamber with repulsive boundary conditions at the walls. Ann. Inst. H. Poincaré 5(1), 135–168 (2004)CrossRefMathSciNetMATHGoogle Scholar
  64. 64.
    Van Diejen, J.F., Emsiz, E.: Diagonalization of the infinite q-Boson. J. Funct. Anal. 266(9), 5801–5817 (2014). arXiv:1308.2237 [math-ph]
  65. 65.
    Van Diejen, J.F., Emsiz, E.: The semi-infinite q-Boson system with boundary interaction. Lett. Math. Phys. 104(1), 103–113 (2014). arXiv:1308.2242 [math-ph]
  66. 66.
    Veto, B.: TracyWidom limit of q-Hahn TASEP (2014). arXiv:1407.2787 [math.PR]
  67. 67.
    Yang C.N.: Some exact results for the many body problem in one dimension with repulsive delta function interaction. Phys. Rev. Lett. 19, 1312–1314 (1967)ADSGoogle Scholar
  68. 68.
    Yang C.N.: S matrix for the one dimensional N-body problem with repulsive or attractive delta-function interaction. Phys. Rev. 168, 1920–1923 (1968)ADSGoogle Scholar
  69. 69.
    Yang, C.N., Yang, C.P.: One dimensional chain of anisotropic spin-spin interaction. Phys. Rev. 150, 321–327, 327–339 (1966)Google Scholar
  70. 70.
    Yang C.N., Yang C.P.: One dimensional chain of anisotropic spin-spin interaction. Phys. Rev. 151, 258–264 (1966)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexei Borodin
    • 1
    • 2
  • Ivan Corwin
    • 1
    • 3
    • 4
    • 5
  • Leonid Petrov
    • 2
    • 6
    • 7
  • Tomohiro Sasamoto
    • 8
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institute for Information Transmission ProblemsMoscowRussia
  3. 3.Department of MathematicsColumbia UniversityNew YorkUSA
  4. 4.Clay Mathematics InstituteProvidenceUSA
  5. 5.Institut Henri PoincaréParisFrance
  6. 6.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  7. 7.Department of MathematicsNortheastern UniversityBostonUSA
  8. 8.Department of PhysicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations