Advertisement

Communications in Mathematical Physics

, Volume 338, Issue 2, pp 533–561 | Cite as

The Topological Open String Wavefunction

  • Alba GrassiEmail author
  • Johan Källén
  • Marcos Mariño
Article

Abstract

We show that, in local Calabi–Yau manifolds, the topological open string partition function transforms as a wavefunction under modular transformations. Our derivation is based on the topological recursion for matrix models, and it generalizes in a natural way the known result for the closed topological string sector. As an application, we derive results for vacuum expectation values of 1/2 BPS Wilson loops in ABJM theory at all genera in a strong coupling expansion, for various representations.

Keywords

Wilson Loop Open String Topological String ABJM Theory String Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mariño, M.: Les Houches lectures on matrix models and topological strings. arXiv:hep-th/0410165
  2. 2.
    Mariño M.: Chern–Simons theory and topological strings. Rev. Mod. Phys. 77, 675 (2005) arXiv:hep-th/0406005 CrossRefADSGoogle Scholar
  3. 3.
    Mariño M.: Chern–Simons Theory, Matrix Models, and Topological Strings. Oxford University Press, Oxford (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Vonk, M.: A mini-course on topological strings. arXiv:hep-th/0504147
  5. 5.
    Neitzke, A., Vafa, C.: Topological strings and their physical applications. arXiv:hep-th/0410178
  6. 6.
    Dijkgraaf R., Vafa C.: Matrix models, topological strings, and supersymmetric gauge theories. Nucl. Phys. B 644, 3 (2002) arXiv:hep-th/0206255 CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Mariño M.: Open string amplitudes and large order behavior in topological string theory. JHEP 0803, 060 (2008) arXiv:hep-th/0612127 CrossRefADSGoogle Scholar
  8. 8.
    Bouchard V., Klemm A., Mariño M., Pasquetti S.: Remodeling the B-model. Commun. Math. Phys. 287, 117 (2009) arXiv:0709.1453 [hep-th]CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Aganagic M., Klemm A., Mariño M., Vafa C.: The Topological vertex. Commun. Math. Phys. 254, 425 (2005) arXiv:hep-th/0305132 CrossRefADSzbMATHGoogle Scholar
  10. 10.
    Bershadsky M., Cecotti S., Ooguri H., Vafa C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994) arXiv:hep-th/9309140 CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    Aganagic M., Bouchard V., Klemm A.: Topological strings and (almost) modular forms. Commun. Math. Phys. 277, 771–819 (2008) arXiv:hep-th/0607100 CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Witten, E.: Quantum background independence in string theory. arXiv:hep-th/9306122
  13. 13.
    Eynard B., Orantin N.: Invariants of algebraic curves and topological expansion. Commun. Numer. Theor. Phys. 1, 347 (2007) arXiv:math-ph/0702045 CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Eynard,B., Mariño, M., Orantin, N.: Holomorphic anomaly and matrix models. JHEP 0706, 058 (2007). arXiv:hep-th/0702110 [HEP-TH]
  15. 15.
    Drukker N., Trancanelli D.: A supermatrix model for N = 6 super Chern–Simons-matter theory. JHEP 1002, 058 (2010) arXiv:0912.3006 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Aharony O., Bergman O., Jafferis D.L., Maldacena J.: N = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. JHEP 0810, 091 (2008) arXiv:0806.1218 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Kapustin A., Willett B., Yaakov I.: Exact results for Wilson loops in superconformal Chern–Simons theories with matter. JHEP 1003, 089 (2010) arXiv:0909.4559 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Mariño M., Putrov P.: Exact results in ABJM theory from topological strings. JHEP 1006, 011 (2010) arXiv:0912.3074 [hep-th]CrossRefADSGoogle Scholar
  19. 19.
    Aganagic M., Klemm A., Mariño M., Vafa C.: Matrix model as a mirror of Chern–Simons theory. JHEP 0402, 010 (2004) arXiv:hep-th/0211098 CrossRefADSGoogle Scholar
  20. 20.
    Mariño M., Putrov P.: ABJM theory as a Fermi gas. J. Stat. Mech. 1203, P03001 (2012) arXiv:1110.4066 [hep-th]Google Scholar
  21. 21.
    Klemm, A., Mariño, M., Schiereck, M., Soroush, M.: ABJM Wilson loops in the Fermi gas approach. arXiv:1207.0611 [hep-th]
  22. 22.
    Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451 (2006) arXiv:hep-th/0312085 CrossRefADSzbMATHGoogle Scholar
  23. 23.
    Aganagic M., Neitzke A., Vafa C.: BPS microstates and the open topological string wave function. Adv. Theor. Math. Phys. 10, 603 (2006) arXiv:hep-th/0504054 CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kashani-Poor A.-K.: The wave function behavior of the open topological string partition function on the conifold. JHEP 0704, 004 (2007) arXiv:hep-th/0606112 CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Neitzke, A., Walcher, J.: Background independence and the open topological string wavefunction. arXiv:0709.2390 [hep-th]
  26. 26.
    Gopakumar, R., Vafa, C.: M theory and topological strings. 2. arXiv:hep-th/9812127
  27. 27.
    Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. arXiv:hep-th/0012041
  28. 28.
    Ooguri H., Vafa C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419 (2000) arXiv:hep-th/9912123 CrossRefADSzbMATHMathSciNetGoogle Scholar
  29. 29.
    Labastida J.M.F., Mariño M., Vafa C.: Knots, links and branes at large N. JHEP 0011, 007 (2000) arXiv:hep-th/0010102 CrossRefADSGoogle Scholar
  30. 30.
    Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. arXiv:1205.1103 [math-ph]
  31. 31.
    Aganagic M., Klemm A., Vafa C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57, 1 (2002) arXiv:hep-th/0105045 CrossRefADSzbMATHMathSciNetGoogle Scholar
  32. 32.
    Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. In: Proceedings of the School on Mirror Symmetry, VectorBundles and Lagrangian Submanifelds. AMS/IP Studies in Advanced Mathematics, vol. 23 (2001). arXiv:hep-th/9906046
  33. 33.
    Mariño M.: Lectures on localization and matrix models in supersymmetric Chern–Simons-matter theories. J. Phys. A 44, 463001 (2011) arXiv:1104.0783 [hep-th]CrossRefADSGoogle Scholar
  34. 34.
    Drukker N., Mariño M., Putrov P.: From weak to strong coupling in ABJM theory. Commun. Math. Phys. 306, 511–563 (2011) arXiv:1007.3837 [hep-th]CrossRefADSzbMATHGoogle Scholar
  35. 35.
    Fuji H., Hirano S., Moriyama S.: Summing up all genus free energy of ABJM matrix model. JHEP 1108, 001 (2011) arXiv:1106.4631 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Hanada M., Honda M., Honma Y., Nishimura J., Shiba S., Yoshida Y.: Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant. JHEP 1205, 121 (2012) arXiv:1202.5300 [hep-th]CrossRefADSGoogle Scholar
  37. 37.
    Bianchi M.S., Giribet G., Leoni M., Penati S.: The 1/2 BPS Wilson loop in ABJM theory at two loops. Phys. Rev. D 88(2), 026009 (2013) arXiv:1303.6939 [hep-th]CrossRefADSGoogle Scholar
  38. 38.
    Akemann G.: Higher genus correlators for the Hermitian matrix model with multiple cuts. Nucl. Phys. B 482, 403 (1996) arXiv:hep-th/9606004 CrossRefADSzbMATHMathSciNetGoogle Scholar
  39. 39.
    Drukker N., Mariño M., Putrov P.: Nonperturbative aspects of ABJM theory. JHEP 1111, 141 (2011) arXiv:1103.4844 [hep-th]CrossRefADSGoogle Scholar
  40. 40.
    Hatsuda Y., Moriyama S., Okuyama K.: Instanton effects in ABJM theory from Fermi gas approach. JHEP 1301, 158 (2013) arXiv:1211.1251 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Calvo F., Mariño M.: Membrane instantons from a semiclassical TBA. JHEP 1305, 006 (2013) arXiv:1212.5118 [hep-th]CrossRefADSGoogle Scholar
  42. 42.
    Hatsuda Y., Moriyama S., Okuyama K.: Instanton bound states in ABJM theory. JHEP 1305, 054 (2013)arXiv:1301.5184 [hep-th]CrossRefADSGoogle Scholar
  43. 43.
    Eynard B.: Topological expansion for the 1-Hermitian matrix model correlation functions. JHEP 0411, 031 (2004) arXiv:hep-th/0407261 CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Bonnet G., David F., Eynard B.: Breakdown of universality in multicut matrix models. J. Phys. A. 33, 6739–6768 (2000) arXiv:cond-mat/0003324 CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Section de Mathématiques, Département de Physique ThéoriqueUniversité de GenèveGenevaSwitzerland

Personalised recommendations