Communications in Mathematical Physics

, Volume 338, Issue 1, pp 103–137 | Cite as

Second-Order Asymptotics for the Classical Capacity of Image-Additive Quantum Channels

Article

Abstract

We study non-asymptotic fundamental limits for transmitting classical information over memoryless quantum channels, i.e. we investigate the amount of classical information that can be transmitted when a quantum channel is used a finite number of times and a fixed, non-vanishing average error is permissible. In this work we consider the classical capacity of quantum channels that are image-additive, including all classical to quantum channels, as well as the product state capacity of arbitrary quantum channels. In both cases we show that the non-asymptotic fundamental limit admits a second-order approximation that illustrates the speed at which the rate of optimal codes converges to the Holevo capacity as the blocklength tends to infinity. The behavior is governed by a new channel parameter, called channel dispersion, for which we provide a geometrical interpretation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arimoto S.: On the converse to the coding theorem for discrete memoryless channels. IEEE Trans. Inf. Theory 19(3), 357–359 (1973). doi:10.1109/TIT.1973.1055007 CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Audenaert K.M.R., Eisert J.: Continuity bounds on the quantum relative entropy. J. Math. Phys. 46(10), 102104 (2005). doi:10.1063/1.2044667 CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Csiszár I.: The method of types. IEEE Trans. Inf. Theory 44(6), 2505–2523 (1998). doi:10.1109/18.720546 CrossRefMATHGoogle Scholar
  5. 5.
    Datta N., Mosonyi M., Hsieh M.-H., Brandao F.G.S.L.: A smooth entropy approach to quantum hypothesis testing and the classical capacity of quantum channels. IEEE Trans. Inf. Theory 59(12), 8014–8026 (2013). doi:10.1109/TIT.2013.2282160 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Dupuis, F., Kraemer, L., Faist, P., Renes, J.M., Renner, R.: Generalized entropies. In: Proceedings of the XVIIth International Congress on Mathematical Physics, pp. 134–153, Aalborg (2012). doi:10.1142/9789814449243_0008
  7. 7.
    Dupuis F., Szehr O., Tomamichel M.: A decoupling approach to classical data transmission over quantum channels. IEEE Trans. Inf. Theory 60(3), 1562–1572 (2014). doi:10.1109/TIT.2013.2295330 CrossRefMathSciNetGoogle Scholar
  8. 8.
    Eggleston H.G.: Convexity. Cambridge University Press, Cambridge (1958)CrossRefMATHGoogle Scholar
  9. 9.
    Feller W.: An Introduction to Probability Theory and Its Applications, 2nd edn. Wiley, New York (1971)Google Scholar
  10. 10.
    Fujiwara A., Nagaoka H.: Operational capacity and pseudoclassicality of a quantum channel. IEEE Trans. Inf. Theory 44(3), 1071–1086 (1998). doi:10.1109/18.669165 CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Fukuda, M., Nechita, I., Wolf, M.M.: Quantum Channels with Polytopic Images and Image Additivity (2014). arXiv:1408.2340
  12. 12.
    Gallager R.G.: A simple derivation of the coding theorem and some applications. IEEE Trans. Inf. Theory 11(1), 3–18 (1965). doi:10.1109/TIT.1965.1053730 CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Gallager R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)MATHGoogle Scholar
  14. 14.
    Han T., Verdu S.: Approximation theory of output statistics. IEEE Trans. Inf. Theory 39(3), 752–772 (1993). doi:10.1109/18.256486 CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Han T.S.: Information-Spectrum Methods in Information Theory. Applications of Mathematics. Springer, New York (2002)Google Scholar
  16. 16.
    Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5(4), 255–257 (2009). doi:10.1038/nphys1224 CrossRefGoogle Scholar
  17. 17.
    Hayashi M.: Information spectrum approach to second-order coding rate in channel coding. IEEE Trans. Inf. Theory 55(11), 4947–4966 (2009). doi:10.1109/TIT.2009.2030478 CrossRefGoogle Scholar
  18. 18.
    Hayashi M., Nagaoka H.: General formulas for capacity of classical-quantum channels. IEEE Trans. Inf. Theory 49(7), 1753–1768 (2003). doi:10.1109/TIT.2003.813556 CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Hayden P., Leung D., Shor P.W., Winter A.: Randomizing quantum states: constructions and applications. Commun. Math. Phys. 250(2), 1–21 (2004). doi:10.1007/s00220-004-1087-6 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Hiai F., Petz D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143(1), 99–114 (1991). doi:10.1007/BF02100287 CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    Holevo A.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44(1), 269–273 (1998). doi:10.1109/18.651037 CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Holevo A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inform. Transm. 9(3), 177–183 (1973)Google Scholar
  23. 23.
    Li K.: Second-order asymptotics for quantum hypothesis testing. Ann. Stat. 42(1), 171–189 (2014). doi:10.1214/13-AOS1185 CrossRefMATHGoogle Scholar
  24. 24.
    Matthews W., Wehner S.: Finite blocklength converse bounds for quantum channels. IEEE Trans. Inf. Theory 60(11), 7317–7329 (2014). doi:10.1109/TIT.2014.2353614 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013). doi:10.1063/1.4838856 CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Nussbaum M., Szkola A.: The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Stat. 37(2), 1040–1057 (2009). doi:10.1214/08-AOS593 CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Ogawa T., Nagaoka H.: Strong converse to the quantum channel coding theorem. IEEE Trans. Inf. Theory 45(7), 2486–2489 (1999). doi:10.1109/18.796386 CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Ogawa T., Nagaoka H.: Strong converse and Stein’s lemma in quantum hypothesis testing. IEEE Trans.Inf. Theory 46(7), 2428–2433 (2000). doi:10.1109/18.887855 CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Ohya M., Petz D., Watanabe N.: On capacities of quantum channels. Probab. Math. Stat. 17(1), 179–196 (1997)MATHMathSciNetGoogle Scholar
  30. 30.
    Parthasarathy K.R.: Probability Measures on Metric Spaces. Academic Press, New York (1967)MATHGoogle Scholar
  31. 31.
    Polyanskiy, Y.: Channel Coding: Non-Asymptotic Fundamental Limits. PhD thesis, Princeton University (2010)Google Scholar
  32. 32.
    Polyanskiy Y., Poor H.V., Verdú S.: Channel coding rate in the finite blocklength regime. IEEE Trans. Inf. Theory 56(5), 2307–2359 (2010). doi:10.1109/TIT.2010.2043769 CrossRefGoogle Scholar
  33. 33.
    Reeb, D.: Personal communication (2013)Google Scholar
  34. 34.
    Renes J.M., Renner R.: Noisy channel coding via privacy amplification and information reconciliation. IEEE Trans. Inf. Theory 57(11), 7377–7385 (2011). doi:10.1109/TIT.2011.2162226 CrossRefMathSciNetGoogle Scholar
  35. 35.
    Schumacher B., Westmoreland M.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997). doi:10.1103/PhysRevA.56.131 CrossRefADSGoogle Scholar
  36. 36.
    Schumacher B., Westmoreland M.: Optimal signal ensembles. Phys. Rev. A 63(2), 022308 (2001). doi:10.1103/PhysRevA.63.022308 CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Sion M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Strassen, V.: Asymptotische Abschätzungen in Shannons Informationstheorie. In: Transmission Third Prague Conference on Information Theory, pp. 689–723, Prague (1962)Google Scholar
  39. 39.
    Sutter, D., Sutter, T., Esfahani, P.M., Renner, R.: Efficient Approximation of Quantum Channel Capacities (2014). arXiv:1407.8202
  40. 40.
    Tomamichel M., Hayashi M.: A hierarchy of information quantities for finite block length analysis of quantum tasks. IEEE Trans. Inf. Theory 59(11), 7693–7710 (2013). doi:10.1109/TIT.2013.2276628 CrossRefMathSciNetGoogle Scholar
  41. 41.
    Tomamichel M., Tan V.Y.F.: A tight upper bound for the third-order asymptotics for most discrete memoryless channels. IEEE Trans. Inf. Theory 59(11), 7041–7051 (2013). doi:10.1109/TIT.2013.2276077 CrossRefMathSciNetGoogle Scholar
  42. 42.
    Umegaki H.: Conditional expectation in an operator algebra. Kodai Math. Sem. Rep. 14, 59–85 (1962)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Wang, L., Renner, R.: One-shot classical-quantum capacity and hypothesis testing. Phys. Rev. Lett. 108(20) (2012). doi: 10.1103/PhysRevLett.108.200501
  44. 44.
    Wilde M.M., Winter A., Yang D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014). doi:10.1007/s00220-014-2122-x CrossRefADSMATHMathSciNetGoogle Scholar
  45. 45.
    Winter A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45(7), 2481–2485 (1999). doi:10.1109/18.796385 CrossRefMATHGoogle Scholar
  46. 46.
    Winter, A.: Coding Theorems of Quantum Information Theory. PhD thesis, Universität Bielefeld (1999). arXiv:quant-ph/9907077

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of PhysicsThe University of SydneySydneyAustralia
  2. 2.Centre for Quantum TechnologiesUniversity of SingaporeSingaporeSingapore
  3. 3.Department of Electrical and Computer EngineeringUniversity of SingaporeSingaporeSingapore
  4. 4.Department of MathematicsUniversity of SingaporeSingaporeSingapore

Personalised recommendations