Communications in Mathematical Physics

, Volume 337, Issue 2, pp 909–954 | Cite as

Spherical T-Duality

  • Peter Bouwknegt
  • Jarah Evslin
  • Varghese Mathai


We introduce spherical T-duality, which relates pairs of the form (P, H) consisting of a principal SU(2)-bundle \({P \rightarrow M}\) and a 7-cocycle H on P. Intuitively spherical T-duality exchanges H with the second Chern class c 2(P). Unless \({dim(M) \leq 4}\), not all pairs admit spherical T-duals and the spherical T-duals are not always unique. Nonetheless, we prove that all spherical T-dualities induce a degree-shifting isomorphism on the 7-twisted cohomologies of the bundles and, when \({dim(M) \leq 7}\), also their integral twisted cohomologies and, when \({dim(M) \leq 4}\), even their 7-twisted K-theories. While spherical T-duality does not appear to relate equivalent string theories, it does provide an identification between conserved charges in certain distinct IIB supergravity and string compactifications.


Spectral Sequence Cohomology Group Cohomology Class Chern Class Circle Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouwknegt, P., Evslin, J., Mathai, V.: T-duality: topology change from H-flux. Commun. Math. Phys. 249, 383–415 (2004). arXiv:hep-th/0306062
  2. 2.
    Bouwknegt, P., Evslin, J., Mathai, V.: On the topology and flux of T-dual manifolds. Phys. Rev. Lett. 92, 181601 (2004). arXiv:hep-th/0312052
  3. 3.
    Bouwknegt, P., Hannabuss, K., Mathai, V.: T-duality for principal torus bundles. J. High Energy Phys. 03, 018 (2004). arXiv:hep-th/0312284
  4. 4.
    Bouwknegt, P., Hannabuss, K., Mathai, V.: T-duality for principal torus bundles and dimensionally reduced Gysin sequences. Adv. Theor. Math. Phys. 9, 749–773 (2005). arXiv:hep-th//0412268
  5. 5.
    Gualtieri, M.: Generalized complex geometry. arXiv:math.DG/0401221
  6. 6.
    Cavalcanti, G., Gualtieri, M.: Generalized complex geometry and T-duality. In: CRM Proceedings and Lecture Notes on A Celebration of the Mathematical Legacy of Raoul Bott, pp. 341–366. American Mathematical Society, Providence (2010). arXiv:1106.1747 [math.DG]
  7. 7.
    Granja, G.: On Quaternionic Line Bundles. Ph.D. thesis, Massachusetts Institute of Technology (1999)Google Scholar
  8. 8.
    Sati, H.: Private communicationGoogle Scholar
  9. 9.
    Sati, H., Westerland, C.: Work in progressGoogle Scholar
  10. 10.
    Nelson P., Manohar A.: Global color is not always defined. Phys. Rev. Lett. 50, 943–945 (1983)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Chern S.-S., Simons J.: Characteristic forms and geometric invariants. Ann. Math. 99, 48–69 (1974)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Greub W., Halperin S., Vanstone R.: Connections, Curvature, and Cohomology, Volumes I, II and III. Academic Press, New York (1976)Google Scholar
  13. 13.
    Raeburn I., Rosenberg J.: Crossed products of continuous-trace C *-algebras by smooth actions. Trans. Am. Math. Soc. 305, 1–45 (1988)MATHMathSciNetGoogle Scholar
  14. 14.
    Bunke, U., Schick, T.: On the topology of T-duality. Rev. Math. Phys. 17, 77–112 (2005). arXiv:math.GT/0405132
  15. 15.
    Mathai, V., Rosenberg, J.: T-duality for torus bundles with H-fluxes via noncommutative topology. Commun. Math. Phys. 253(3), 705–721 (2005). arXiv:hep-th/0401168
  16. 16.
    Mathai, V., Rosenberg, J.: T-duality for torus bundles with H-fluxes via noncommutative topology, II; the high-dimensional case and the T-duality group. Adv. Theor. Math. Phys. 10, 123–158 (2006). arXiv:hep-th/0508084
  17. 17.
    Mathai, V., Rosenberg, J.: On mysteriously missing T-duals, H-flux and the T-duality group. In: Ge, M.-L., Zhang, W. (eds.) Differential Geometry and Physics. Nankai Tracts in Mathematics, vol. 10, pp. 350–358. World Scientific Publishing, Hackensack (2006). arXiv:hep-th/0409073
  18. 18.
    Bunke, U., Rumpf, P., Schick, T.: The topology of T-duality for T n-bundles. Rev. Math. Phys. 18, 1103–1154 (2006). arXiv:math.KT/0501487
  19. 19.
    Stevenson, D.: The Geometry of Bundle Gerbes. PhD thesis, University of Adelaide (2000). arXiv:math.DG/0004117
  20. 20.
    Quillen D.G.: Rational Homotopy Theory. Ann. Math. (second series) 90(2), 205–295 (1969)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Félix Y., Halperin S., Thomas J.C.: Rational homotopy theory. Graduate Texts in Mathematics, vol. 205. Springer, New York (2001)CrossRefGoogle Scholar
  22. 22.
    Hess, K.: Rational homotopy theory: a brief introduction. Interactions between homotopy theory and algebra. Contemp. Math. 436, 175–202 (2007) (American Mathematical Society, Providence)Google Scholar
  23. 23.
    Mimura M., Toda H.: Homotopy groups of SU(3), SU(4) and Sp(2). J. Math. Kyoto Univ. 3(2), 217–250 (1963)MathSciNetGoogle Scholar
  24. 24.
    Crowley, D., Goette, S.: Kreck–Stolz invariants for quaternionic line bundles. Trans. Am. Math. Soc. 365, 3193–3225 (2013). arXiv:1012.5237 [math.GT]
  25. 25.
    Taubes C.H.: Differential geometry: bundles, connections, metrics and curvature. Oxford Graduate Texts in Mathematics, vol. 23. Oxford University Press, Oxford (2011)CrossRefGoogle Scholar
  26. 26.
    Gonçalves D., Spreafico M.: Quaternionic line bundles over quaternionic projective spaces. Math. J. Okayama Univ. 48, 87–101 (2006)MATHMathSciNetGoogle Scholar
  27. 27.
    Collinucci, A., Evslin, J.: Twisted homology. J. High Energy Phys. 03, 058 (2007). arXiv:hep-th/0611218
  28. 28.
    Maldacena, J.M., Moore, G.W., Seiberg, N.: D-brane instantons and K theory charges. J. High Energy Phys. 11, 062 (2001). arXiv:hep-th/0108100
  29. 29.
    Bouwknegt, P., Carey, A., Mathai, V., Murray, M., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228, 17–49 (2002). arXiv:hep-th/0106194
  30. 30.
    Sati, H.: Topological aspects of the partition function of the NS5-brane. arXiv:1109.4834 [hep-th]
  31. 31.
    Sati, H.: A higher twist in string theory. J. Geom. Phys. 59, 369–373 (2009). arXiv:hep-th/0701232
  32. 32.
    Evslin, J., Varadarajan, U.: K theory and S duality: starting over from square 3. J. High Energy Phys. 03, 026 (2003). arXiv:hep-th/0112084
  33. 33.
    Witten, E.: Baryons and branes in anti-de Sitter space. J. High Energy Phys. 07, 006 (1998). arXiv:hep-th/9805112
  34. 34.
    Vafa, C.: Evidence for F theory. Nucl. Phys. B 469, 403–418 (1996). arXiv:hep-th/9602022
  35. 35.
    Moore, G.W., Witten, E.: Selfduality, Ramond–Ramond fields, and K theory. J. High Energy Phys. 05, 032 (2000). arXiv:hep-th/9912279
  36. 36.
    Evslin, J.: Twisted K theory from monodromies. J. High Energy Phys. 05, 030 (2003). arXiv:hep-th/0302081
  37. 37.
    Evslin, J.: What does(n’t) K-theory classify? arXiv:hep-th/0610328
  38. 38.
    Buscher T.: A symmetry of the string background field equations. Phys. Lett. B 194, 59–62 (1987)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Buscher T.: Path integral derivation of quantum duality in nonlinear sigma models. Phys. Lett. B 201, 466–472 (1988)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Dadarlat, M., Pennig, U.: A Dixmier–Douady theory for strongly self-absorbing C *-algebras. arXiv:1302.4468 [math.AT]
  41. 41.
    Pennig, U.: A noncommutative model for higher twisted K-Theory. arXiv:1502.02807
  42. 42.
    Raeburn, I.: A duality theorem for crossed products by nonabelian groups. In: Cowling, M., Meaney, C., Moran, W. (eds.) Miniconference on Harmonic Analysis (Canberra, 17–20 June 1987). Proceedings of the Centre for Mathematical Analysis, vol. 15, pp. 214–227 (1987)Google Scholar
  43. 43.
    Atiyah, M., Segal, G.: Twisted K-theory, Ukr. Mat. Visn. 1, 287–330 (2004) (translation in Ukr. Math. Bull. 1, 291–334, 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Peter Bouwknegt
    • 1
  • Jarah Evslin
    • 2
  • Varghese Mathai
    • 3
  1. 1.Department of Theoretical Physics, Research School of Physics and Engineering and Mathematical Sciences InstituteThe Australian National UniversityCanberraAustralia
  2. 2.High Energy Nuclear Physics Group, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  3. 3.Department of Pure MathematicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations