Communications in Mathematical Physics

, Volume 337, Issue 2, pp 817–877 | Cite as

Logarithmic Correction for the Susceptibility of the 4-Dimensional Weakly Self-Avoiding Walk: A Renormalisation Group Analysis

  • Roland Bauerschmidt
  • David C. Brydges
  • Gordon Slade
Article

Abstract

We prove that the susceptibility of the continuous-time weakly self-avoiding walk on \({\mathbb{Z}^d}\), in the critical dimension d = 4, has a logarithmic correction to mean-field scaling behaviour as the critical point is approached, with exponent \({\frac{1}{4}}\) for the logarithm. The susceptibility has been well understood previously for dimensions d ≥ 5 using the lace expansion, but the lace expansion does not apply when d = 4. The proof begins by rewriting the walk two-point function as the two-point function of a supersymmetric field theory. The field theory is then analysed via a rigorous renormalisation group method developed in a companion series of papers. By providing a setting where the methods of the companion papers are applied together, the proof also serves as an example of how to assemble the various ingredients of the general renormalisation group method in a coordinated manner.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman M.: Geometric analysis of \({\varphi^4}\) fields and Ising models, parts I and II. Commun. Math. Phys. 86, 1–48 (1982)CrossRefADSMATHMathSciNetGoogle Scholar
  2. 2.
    Aragão de Carvalho C., Caracciolo S., Fröhlich J.: Polymers and \({g|\phi|^4}\) theory in four dimensions. Nucl. Phys. B 215(FS7), 209–248 (1983)CrossRefADSGoogle Scholar
  3. 3.
    Bauerschmidt R.: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: (in preparation)Google Scholar
  5. 5.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Commun. Math. Phys. (2015). doi:10.1007/s00220-015-2353-5
  6. 6.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: A renormalisation group method. III. Perturbative analysis. J. Stat. Phys. 159, 492–529 (2015)Google Scholar
  7. 7.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: Structural stability of a dynamical system near a non-hyperbolic fixed point. Ann. Henri Poincaré 16, 1033–1065 (2015)Google Scholar
  8. 8.
    Bauerschmidt R., Brydges D.C., Slade G.: Scaling limits and critical behaviour of the 4-dimensional n-component \({|\varphi|^4}\) spin model. J. Stat. Phys 157, 692–742 (2014)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bauerschmidt, R., Duminil-Copin, H., Goodman, J., Slade, G.: Lectures on self-avoiding walks. In: Ellwood, D., Newman, C., Sidoravicius, V., Werner, W. (eds.) Clay Mathematics Proceedings of Probability and Statistical Physics in Two and More Dimensions, vol. 15, pp. 395–467. American Mathematical Society, Providence (2012)Google Scholar
  10. 10.
    Berezin F.A.: The Method of Second Quantization. Academic Press, New York (1966)MATHGoogle Scholar
  11. 11.
    Bovier A., Felder G., Fröhlich J.: On the critical properties of the Edwards and the self-avoiding walk model of polymer chains. Nucl. Phys. B 230(FS10), 119–147 (1984)CrossRefADSGoogle Scholar
  12. 12.
    Brézin E., Le Guillou J.C., Zinn-Justin J.: Approach to scaling in renormalized perturbation theory. Phys. Rev. D 8, 2418–2430 (1973)CrossRefADSGoogle Scholar
  13. 13.
    Brydges D., Evans S.N., Imbrie J.Z.: Self-avoiding walk on a hierarchical lattice in four dimensions. Ann. Probab. 20, 82–124 (1992)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Brydges, D., Slade, G., et al.: Renormalisation group analysis of weakly self-avoiding walk in dimen sions four and higher. In: Bhatia, R. (ed.) Proceedings of the International Congress of Mathematicians, Hyderabad 2010, pp. 2232–2257. World Scientific, Singapore (2011)Google Scholar
  15. 15.
    Brydges, D.C.: Lectures on the renormalisation group. In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics, vol. 16, pp. 7–93. American Mathematical Society, IAS/Park City Mathematics Series, Providence (2009)Google Scholar
  16. 16.
    Brydges, D.C., Dahlqvist, A., Slade, G.: The strong interaction limit of continuous-time weakly self-avoiding walk. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds.) Probability in Complex Physical Systems: In Honour of Erwin Bolthausen and Jürgen Gärtner, Springer Proceedings in Mathematics, vol. 11, pp. 275–287. Springer, Berlin (2012)Google Scholar
  17. 17.
    Brydges D.C., Guadagni G., Mitter P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)CrossRefADSMATHMathSciNetGoogle Scholar
  18. 18.
    Brydges D.C., Imbrie J.Z.: End-to-end distance from the Green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 523–547 (2003)CrossRefADSMATHMathSciNetGoogle Scholar
  19. 19.
    Brydges D.C., Imbrie J.Z.: Green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 549–584 (2003)CrossRefADSMATHMathSciNetGoogle Scholar
  20. 20.
    Brydges D.C., Imbrie J.Z., Slade G.: Functional integral representations for self-avoiding walk. Probab. Surv. 6, 34–61 (2009)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Brydges, D.C., Slade, G.: A renormalisation group method. I. Gaussian integration and normed algebras. J. Stat. Phys. 159, 421–460 (2015)Google Scholar
  22. 22.
    Brydges, D.C., Slade, G.: A renormalisation group method. II. Approximation by local polynomials. J. Stat. Phys. 159, 461–491 (2015)Google Scholar
  23. 23.
    Brydges, D.C., Slade, G.: A renormalisation group method. IV. Stability analysis. J. Stat. Phys. 159, 530–588 (2015)Google Scholar
  24. 24.
    Brydges, D.C., Slade, G.: A renormalisation group method. V. A single renormalisation group step. J. Stat. Phys. 159, 589–667 (2015)Google Scholar
  25. 25.
    Brydges D.C., Slade G.: The diffusive phase of a model of self-interacting walks. Probab. Theory Relat. Fields 103, 285–315 (1995)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Brydges D.C., Spencer T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)CrossRefADSMATHMathSciNetGoogle Scholar
  27. 27.
    de Gennes P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A 38, 339–340 (1972)CrossRefADSGoogle Scholar
  28. 28.
    Disertori M., Spencer T.: Anderson localization for a supersymmetric sigma model. Commun. Math. Phys. 300, 659–671 (2010)CrossRefADSMATHMathSciNetGoogle Scholar
  29. 29.
    Disertori M., Spencer T., Zirnbauer M.R.: Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model. Commun. Math. Phys. 300, 435–486 (2010)CrossRefADSMATHMathSciNetGoogle Scholar
  30. 30.
    Duplantier B.: Polymer chains in four dimensions. Nucl. Phys. B 275(FS17), 319–355 (1986)CrossRefADSGoogle Scholar
  31. 31.
    Feldman J., Magnen J., Rivasseau V., Sénéor R.: Construction and Borel summability of infrared \({\Phi^4_4}\) by a phase space expansion. Commun. Math. Phys. 109, 437–480 (1987)CrossRefADSGoogle Scholar
  32. 32.
    Feller W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)Google Scholar
  33. 33.
    Fröhlich J.: On the triviality of \({\varphi_d^4}\) theories and the approach to the critical point in d ≥ 4 dimensions. Nucl. Phys. B200(FS4), 281–296 (1982)CrossRefADSGoogle Scholar
  34. 34.
    Gawȩdzki K., Kupiainen A.: Massless lattice \({\varphi^4_4}\) theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 199–252 (1985)Google Scholar
  35. 35.
    Gawȩdzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In: Osterwalder, K., Stora, R. (eds.) Critical Phenomena, Random Systems, Gauge Theories. Amsterdam, (1986). North-Holland, Les Houches (1984)Google Scholar
  36. 36.
    Golowich S.E., Imbrie J.Z.: The broken supersymmetry phase of a self-avoiding random walk. Commun. Math. Phys. 168, 265–319 (1995)CrossRefADSMATHMathSciNetGoogle Scholar
  37. 37.
    Gruber C., Kunz H.: General properties of polymer systems. Commun. Math. Phys. 22, 133–161 (1971)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Hara T.: A rigorous control of logarithmic corrections in four dimensional \({\varphi^4}\) spin systems. I. Trajectory of effective Hamiltonians. J. Stat. Phys. 47, 57–98 (1987)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Hara T.: Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36, 530–593 (2008)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Hara T., Slade G.: Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun. Math. Phys. 147, 101–136 (1992)CrossRefADSMATHMathSciNetGoogle Scholar
  41. 41.
    Hara T., Tasaki H.: A rigorous control of logarithmic corrections in four dimensional \({\varphi^4}\) spin systems. II. Critical behaviour of susceptibility and correlation length. J. Stat. Phys. 47, 99–121 (1987)CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    den Hollander, F.: Random Polymers, Lecture Notes in Mathematics. Ecole d’Eté de Probabilités de Saint–Flour XXXVII–2007, vol. 1974. Springer, Berlin (2009)Google Scholar
  43. 43.
    Iagolnitzer D., Magnen J.: Polymers in a weak random potential in dimension four: rigorous renormalization group analysis. Commun. Math. Phys. 162, 85–121 (1994)CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Itzykson C., Drouffe J.-M.: Statistical Field Theory, vol. I. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  45. 45.
    Larkin, A.I., Khmel’Nitskiĭ, D.E.: Phase transition in uniaxial ferroelectrics. Sov. Phys. JETP 29, 1123–1128 (1969); English translation of Zh. Eksp. Teor. Fiz. 56, 2087–2098 (1969)Google Scholar
  46. 46.
    Lawler G.F.: Gaussian behavior of loop-erased self-avoiding random walk in four dimensions. Duke Math. J. 53, 249–269 (1986)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Lawler, G.F.: The logarithmic correction for loop-erased walk in four dimensions. J. Fourier Anal. Appl. In: Special Issue: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, June 28–July 3 1993), pp. 347–362 (1995)Google Scholar
  48. 48.
    Lawler G.F., Schramm O., Werner W.: On the scaling limit of planar self-avoiding walk. Proc. Symp. Pure Math. 72, 339–364 (2004)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Le Jan, Y.: Temps local et superchamp. In: Séminaire de Probabilités XXI. Lecture Notes in Mathematics #1247, pp. 176–190. Springer, Berlin (1987)Google Scholar
  50. 50.
    Luttinger J.M.: The asymptotic evaluation of a class of path integrals. II. J. Math. Phys. 24, 2070–2073 (1983)CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    Madras N., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1993)MATHGoogle Scholar
  52. 52.
    McKane A.J.: Reformulation of n → 0 models using anticommuting scalar fields. Phys. Lett. A 76, 22–24 (1980)CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Mitter P.K., Scoppola B.: The global renormalization group trajectory in a critical supersymmetric field theory on the lattice \({{\mathbb Z}^3}\). J. Stat. Phys. 133, 921–1011 (2008)CrossRefADSMATHMathSciNetGoogle Scholar
  54. 54.
    Nienhuis B.: Exact critical exponents of the O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062–1065 (1982)CrossRefADSMathSciNetGoogle Scholar
  55. 55.
    Ohno, M.: (in preparation)Google Scholar
  56. 56.
    Parisi G., Sourlas N.: Self-avoiding walk and supersymmetry. J. Phys. Lett. 41, L403–L406 (1980)CrossRefGoogle Scholar
  57. 57.
    Rudin W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)Google Scholar
  58. 58.
    Schram, R.D., Barkema, G.T., Bisseling, R.H.: Exact enumeration of self-avoiding walks. J. Stat. Mech. P06019 (2011)Google Scholar
  59. 59.
    Slade, G.: The Lace Expansion and its Applications, Lecture Notes in Mathematics vol. 1879. Ecole d’Eté de Probabilités de Saint–Flour XXXIV–2004. Springer, Berlin (2006)Google Scholar
  60. 60.
    Slade, G., Tomberg, A.: Critical correlation functions for the 4-dimensional weakly self-avoiding walk and n-component \({|\varphi|^4}\) model. arXiv:1412.2668
  61. 61.
    Wegner F.J., Riedel E.K.: Logarithmic corrections to the molecular-field behavior of critical and tricritical systems. Phys. Rev. B 7, 248–256 (1973)CrossRefADSGoogle Scholar
  62. 62.
    Wilson K.G., Kogut J.: The renormalization group and the \({\epsilon}\) expansion. Phys. Rep. 12, 75–200 (1974)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Roland Bauerschmidt
    • 1
  • David C. Brydges
    • 2
  • Gordon Slade
    • 2
  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations