Communications in Mathematical Physics

, Volume 335, Issue 3, pp 1065–1098 | Cite as

Directed Nonabelian Sandpile Models on Trees

  • Arvind Ayyer
  • Anne Schilling
  • Benjamin Steinberg
  • Nicolas M. Thiéry


We define two general classes of nonabelian sandpile models on directed trees (or arborescences), as models of nonequilibrium statistical physics. Unlike usual applications of the well-known abelian sandpile model, these models have the property that sand grains can enter only through specified reservoirs.

In the Trickle-down sandpile model, sand grains are allowed to move one at a time. For this model, we show that the stationary distribution is of product form. In the Landslide sandpile model, all the grains at a vertex topple at once, and here we prove formulas for all eigenvalues, their multiplicities, and the rate of convergence to stationarity. The proofs use wreath products and the representation theory of monoids.


Markov Chain Stationary Distribution Cayley Graph Wreath Product Totally Asymmetric Simple Exclusion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AKS14.
    Ayyer A., Klee S., Schilling A.: Combinatorial Markov chains on linear extensions. J. Algebr. Combin. 39(4), 853–881 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  2. Alm94.
    Almeida, J.: Finite semigroups and universal algebra, Series in Algebra, vol. 3. World Scientific Publishing Co. Inc., River Edge (1994) (Translated from the 1992 Portuguese original and revised by the author)Google Scholar
  3. AS10.
    Ayyer, A., Strehl, V.: The spectrum of an asymmetric annihilation process. In: 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), Discrete Math. Theor. Comput. Sci. Proc., AN, pp. 461–472. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2010)Google Scholar
  4. AS13.
    Ayyer, A., Strehl, V.: Stationary distribution and eigenvalues for a de Bruijn process. In: Kotsireas, I.S., Zima, E.V. (eds.) Advances in Combinatorics, pp. 101–120. Springer, Berlin (2013)Google Scholar
  5. ASST14.
    Ayyer, A., Schilling, A., Steinberg, B., Thiéry, N.M.: \({{\fancyscript{R}}}\)-trivial monoids and Markov chains. Int. J. Algebra Comput. (2014, to appear). arXiv:1401.4250
  6. Ayy11.
    Ayyer A.: Algebraic properties of a disordered asymmetric Glauber model. J. Stat. Mech. Theory Exp. 2011(02), P02034 (2011)CrossRefMathSciNetGoogle Scholar
  7. BD98.
    Brown K.S., Diaconis P.: Random walks and hyperplane arrangements. Ann. Probab. 26(4), 1813–1854 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. BF80.
    Brzozowski J.A., Fich F.E.: Languages of \({{\mathcal{R}}}\) -trivial monoids. J. Comput. Syst. Sci. 20(1), 32–49 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  9. BHR99.
    Bidigare P., Hanlon P., Rockmore D.: A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements. Duke Math. J. 99(1), 135–174 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  10. Big99.
    Biggs N.L.: Chip-firing and the critical group of a graph. J. Algebr. Combin. 9(1), 25–45 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  11. Bjo08.
    Björner, A.: Random walks, arrangements, cell complexes, greedoids, and self-organizing libraries. In: Building Bridges, Bolyai Soc. Math. Stud., vol. 19, pp. 165–203. Springer, Berlin (2008)Google Scholar
  12. Bjo09.
    Björner A.: Note: Random-to-front shuffles on trees. Electron. Commun. Probab. 14, 36–41 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. BLS91.
    Björner A., Lovász L., Shor P.W.: Chip-firing games on graphs. Eur. J. Combin 12(4), 283–291 (1991)CrossRefzbMATHGoogle Scholar
  14. Bro00.
    Brown K.S.: Semigroups, rings, and Markov chains. J. Theor. Probab. 13(3), 871–938 (2000)CrossRefzbMATHGoogle Scholar
  15. BTW87.
    Bak P., Tang C., Wiesenfeld K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)CrossRefADSMathSciNetGoogle Scholar
  16. CG12.
    Chung F., Graham R.: Edge flipping in graphs. Adv. Appl. Math. 48(1), 37–63 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. CLB03.
    Cori R., Le Borgne Y.: The sand-pile model and Tutte polynomials. Adv. Appl. Math. 30(1), 44–52 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. CP61.
    Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. I. Mathematical Surveys, No. 7. American Mathematical Society, Providence (1961)Google Scholar
  19. DEHP93.
    Derrida B., Evans M.R., Hakim V., Pasquier V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26(7), 1493–1517 (1993)CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. Deo74.
    Deo, N,: Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc., Englewood Cliffs (1974)Google Scholar
  21. Dha90.
    Dhar D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64(14), 1613–1616 (1990)CrossRefADSzbMATHMathSciNetGoogle Scholar
  22. Dha99a.
    Dhar D.: The abelian sandpile and related models. Phys. A Stat. Mech. Appl. 263(1), 4–25 (1999)CrossRefMathSciNetGoogle Scholar
  23. Dha99b.
    Dhar, D.: Some results and a conjecture for Manna’s stochastic sandpile model. Phys. A Stat. Mech. Appl. 270(1), 69–81 (1999)Google Scholar
  24. Dha06.
    Dhar, D.: Theoretical studies of self-organized criticality. Phys. A Stat. Mech. Appl. 369(1), 29–70 (2006). Fundamental Problems in Statistical Physics Proceedings of the 11th International Summerschool on ‘Fundamental problems in statistical physics’, Leuven, Belgium 11th International Summerschool on ‘Fundamental problems in statistical physics’Google Scholar
  25. DHST11.
    Denton, T., Hivert, F., Schilling, A., Thiéry, N.M.: On the representation theory of finite \({{\mathcal{J}}}\)-trivial monoids. Sém. Lothar. Combin. 64, Art. B64d, 44 (2010/2011)Google Scholar
  26. Dia88.
    Diaconis, P.: Group representations in probability and statistics. Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 11. Institute of Mathematical Statistics, Hayward (1988)Google Scholar
  27. Dia98.
    Diaconis, P.: From shuffling cards to walking around the building: an introduction to modern Markov chain theory. In: Proceedings of the International Congress of Mathematicians, vol. I (Berlin, 1998), pp. 187–204 (1998)Google Scholar
  28. DL01.
    Devroye L., Lugosi G.: Combinatorial methods in density estimation, Springer Series in Statistics Series. Springer, Berlin (2001)Google Scholar
  29. Eil76.
    Eilenberg, S.: Automata, languages, and machines, vol. B. Academic Press, Harcourt Brace Jovanovich Publishers, New York (1976) [with two chapters (“Depth decomposition theorem” and “Complexity of semigroups and morphisms”) by Bret Tilson, Pure and Applied Mathematics, vol. 59 (1976)]Google Scholar
  30. GMP02.
    Goles E., Morvan M., Phan H.D.: The structure of a linear chip firing game and related models. Theor. Comput. Sci. 270(1-2), 827–841 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  31. GNS00.
    Grigorchuk R.I., Nekrashevich V.V., Sushchanskiĭ V.I.: Automata, dynamical systems, and groups. Tr. Mat. Inst. Steklova 231(Din. Sist. Avtom. i Beskon. Gruppy), 134–214 (2000)Google Scholar
  32. GZ01.
    Grigorchuk R.I.,  Zuk A.: The lamplighter group as a group generated by a 2-state automaton, and its spectrum. Geom. Dedicata 87(1–3), 209–244 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  33. Hig92.
    Higgins, P.M.: Techniques of semigroup theory. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1992) (with a foreword by G. B. Preston)Google Scholar
  34. HLM+08.
    Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs. In and Out of Equilibrium 2, pp. 331–364 (2008)Google Scholar
  35. How95.
    Howie, J.M.: Fundamentals of semigroup theory, London Mathematical Society Monographs. New Series, vol. 12. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, (1995)Google Scholar
  36. IP98.
    Ivashkevich E.V., Priezzhev V.B.: Introduction to the sandpile model. Phys. A Stat. Mech. Appl. 254(1-2), 97–116 (1998)CrossRefGoogle Scholar
  37. KRT68.
    Krohn, K., Rhodes, J., Tilson, B.: Algebraic theory of machines, languages, and semigroups, Chapters 1, 5–9. In: Arbib, M.A. (ed.) With a major contribution by Kenneth Krohn and John L. Rhodes. Academic Press, New York (1968)Google Scholar
  38. KSS06.
    Kambites M., Silva P.V., Steinberg B.: The spectra of lamplighter groups and Cayley machines. Geom. Dedicata 120, 193–227 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  39. LPW09.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Society, Providence (2009) (with a chapter by James G. Propp and David B. Wilson)Google Scholar
  40. Man91.
    Manna S.S.: Two-state model of self-organized criticality. J. Phys. A Math. Gen. 24(7), L363 (1991)CrossRefADSMathSciNetGoogle Scholar
  41. Mel95a.
    Meldrum J.D.P.: Wreath products of groups and semigroups, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 74. Longman, Harlow (1995)Google Scholar
  42. Mel95b.
    Meldrum J.D.P.: Wreath products of groups and semigroups, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 74. Longman, Harlow (1995)Google Scholar
  43. MG69.
    MacDonald C.T., Gibbs J.H.: Concerning the kinetics of polypeptide synthesis on polyribosomes. Biopolymers 7(5), 707–725 (1969)CrossRefGoogle Scholar
  44. MGP68.
    MacDonald C.T., Gibbs J.H., Pipkin A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)CrossRefGoogle Scholar
  45. MS12.
    Margolis S., Steinberg B.: Quivers of monoids with basic algebras. Compos. Math. 148(5), 1516–1560 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  46. Nek05.
    Nekrashevych, V.: Self-similar groups, Mathematical Surveys and Monographs, vol. 117. American Mathematical Society, Providence (2005)Google Scholar
  47. Pin86.
    Pin, J.-E.: Varieties of formal languages. Foundations of Computer Science. Plenum Publishing Corp., New York (1986) (with a preface by M.-P. Schützenberger, Translated from the French by A. Howie)Google Scholar
  48. PS04.
    Postnikov A., Shapiro B.: Trees, parking functions, syzygies, and deformations of monomial ideals. Trans. Am. Math. Soc. 356(8), 3109–3142 (2004). (electronic)CrossRefzbMATHMathSciNetGoogle Scholar
  49. RS09.
    Rhodes J., Steinberg B.: The q-theory of finite semigroups, Springer Monographs in Mathematics. Springer, New York (2009)CrossRefGoogle Scholar
  50. S+13.
    Stein W.A., et al. Sage Mathematics Software (Version 5.9). The Sage Development Team (2013).
  51. SCc08.
    The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2008).
  52. SD09.
    Sadhu T., Dhar D.: Steady state of stochastic sandpile models. J. Stat. Phys. 134(3), 427–441 (2009)CrossRefADSzbMATHMathSciNetGoogle Scholar
  53. SRB96.
    Schütz G.M., Ramaswamy R., Barma M.: Pairwise balance and invariant measures for generalized exclusion processes. J. Phys. A Math. Gen. 29(4), 837 (1996)CrossRefADSzbMATHGoogle Scholar
  54. Sta99.
    Stanley, R.P.: Enumerative combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999) (with a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin)Google Scholar
  55. Ste06.
    Steinberg B.: Möbius functions and semigroup representation theory. J. Combin. Theory Ser. A 113(5), 866–881 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  56. Ste08.
    Steinberg B.: Möbius functions and semigroup representation theory. II. Character formulas and multiplicities. Adv. Math. 217(4), 1521–1557 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  57. SW98.
    Sasamoto T., Wadati M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A Math. Gen. 31(28), 6057 (1998)CrossRefADSzbMATHMathSciNetGoogle Scholar
  58. TB97.
    Tripathy G., Barma M.: Steady state and dynamics of driven diffusive systems with quenched disorder. Phys. Rev. Lett. 78, 3039–3042 (1997)CrossRefADSGoogle Scholar
  59. Tou05.
    Toumpakari, E.C.: On the Abelian Sandpile Model. Ph.D. thesis, University of Chicago, Department of Mathematics (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Arvind Ayyer
    • 1
    • 2
  • Anne Schilling
    • 2
  • Benjamin Steinberg
    • 3
  • Nicolas M. Thiéry
    • 4
  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of MathematicsUC DavisDavisUSA
  3. 3.Department of MathematicsCity College of New YorkNew YorkUSA
  4. 4.Laboratoire de Recherche en Informatique - CNRS: UMR 8623Université Paris-SudOrsayFrance

Personalised recommendations