Communications in Mathematical Physics

, Volume 338, Issue 1, pp 267–284 | Cite as

Hypergeometric \({\tau}\) -Functions, Hurwitz Numbers and Enumeration of Paths



A multiparametric family of 2D Toda \({\tau}\) -functions of hypergeometric type is shown to provide generating functions for composite, signed Hurwitz numbers that enumerate certain classes of branched coverings of the Riemann sphere and paths in the Cayley graph of S n . The coefficients \({{F^{c_{1}, . . . , c_{l}}_{d_{1}, . . . , d_{m}}}(\mu, \nu)}\) in their series expansion over products \({P_{\mu}P^{'}_{\nu}}\) of power sum symmetric functions in the two sets of Toda flow parameters and powers of the l + m auxiliary parameters are shown to enumerate \({|\mu|=|\nu|=n}\) fold branched covers of the Riemann sphere with specified ramification profiles \({ \mu}\) and \({\nu}\) at a pair of points, and two sets of additional branch points, satisfying certain additional conditions on their ramification profile lengths. The first group consists of l branch points, with ramification profile lengths fixed to be the numbers \({(n-c_{1}, . . . , n-c_{l})}\) ; the second consists of m further groups of “coloured” branch points, of variable number, for which the sums of the complements of the ramification profile lengths within the groups are fixed to equal the numbers \({(d_{1}, . . . , d_{m})}\). The latter are counted with signs determined by the parity of the total number of such branch points. The coefficients \({{F^{c_{1}, . . . , c_{l}}_{d_{1}, . . . , d_{m}}}(\mu, \nu)}\) are also shown to enumerate paths in the Cayley graph of the symmetric group S n generated by transpositions, starting, as in the usual double Hurwitz case, at an element in the conjugacy class of cycle type \({\mu}\) and ending in the class of type \({\nu}\), with the first l consecutive subsequences of \({(c_{1}, . . . , c_{l})}\) transpositions strictly monotonically increasing, and the subsequent subsequences of \({(d_{1}, . . . , d_{m})}\) transpositions weakly increasing.


Matrix Model Branch Point Conjugacy Class Cayley Graph Irreducible Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov A., Mironov A., Morozov A., Natanzon S.: Integrability of Hurwitz partition functions. I. Summary. J. Phys. A 45, 045209 (2012)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Alexandrov A., Mironov A., Morozov A., Natanzon S.: On KP-integrable Hurwitz functions. JHEP 1411, 080 (2014)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Ambjørn, J., Chekhov, L.: The matrix model for dessins d’enfants. Ann. Inst. Henri Poincaré, Comb. Phys. Interact. 1, 337–361 (2014). See also arXiv:1404.4240
  4. 4.
    Brown T.W.: Complex matrix model duality. Phys. Rev. D 83, 085002 (2011)CrossRefADSGoogle Scholar
  5. 5.
    Diaconis, P., Greene, C.: Applications of Murphy’s elements. Stanford Technical Report 335 (1989)Google Scholar
  6. 6.
    Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Sato, M. (ed.) Non-Linear Integrable Systems Classical and Quantum Theory, Proceedings of RIMS Symposium (1981). World Scientific, (1983)Google Scholar
  7. 7.
    Eynard B., Orantin N.: Topological recursion in enumerative geometry and random matrices. J. Phys. A 42, 293001 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129, Chapt. 4, and Appendix A. Springer, New York, Berlin, Heidelberg (1991)Google Scholar
  9. 9.
    Frobenius, G.: Über die Charaktere der symmetrischen Gruppe. Sitzber. Pruess. Akad. Berlin, pp. 516–534 (1900)Google Scholar
  10. 10.
    Gross K.I., Richards D.S.: Special functions of matrix arguments. I: Algebraic induction, zonal polynomials, and hypergeometric functions. Trans. Am. Math. Soc. 301, 781–811 (1987)MATHMathSciNetGoogle Scholar
  11. 11.
    Goulden I.P., Guay-Paquet M., Novak J.: Monotone Hurwitz numbers and the HCIZ integral. Ann. Math. Blaise Pascal 21(1), 71–89 (2014)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Goulden, I.P., Guay-Paquet, M., Novak J.: Toda equations and piecewise polynomiality for mixed double Hurwitz numbers. arXiv:1307.2137
  13. 13.
    Goulden I.P., Jackson D.M.: Transitive factorizations into transpositions and holomorphic mappings on the sphere. Proc. Am. Math. Soc. 125(1), 51–60 (1997)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Guay-Paquet, M., Harnad, J.: 2D Toda \({\tau}\) -functions as combinatorial generating functions. Lett. Math. Phys. (2015, in press). arXiv:1405.6303
  15. 15.
    Harish-Chandra: Differential operators on a semisimple Lie algebra. Am. J. Math. 79, 87–120 (1957)Google Scholar
  16. 16.
    Itzykson, C., Zuber, J.-B.: The planar approximation. II. J. Math. Phys. 21, 411–21 (1980)Google Scholar
  17. 17.
    Harnad, J., Orlov, A.Yu.: Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions. J. Phys. A 39, 8783–8809 (2006). See also arXiv:math-ph/0512056
  18. 18.
    Harnad, J., Orlov, A.Yu.: Convolution symmetries of integrable hierarchies, matrix models and tau functions. In: Deift, P., Forrester, P. (eds.) Random Matrix Theory, Interacting Particle Systems, and Integrable Systems. MSRI Publications, vol. 65, pp. 247–275. Cambridge University Press (2014). See also arXiv:0901.0323
  19. 19.
    Kazarian, M., Zograf, P.: ‘Virasoro constraints and topological recursion for Grothendieck’s dessin counting. arXiv:1406.5976
  20. 20.
    Kharchev S., Marshakov A., Mironov A., Morozov A.: Generalized Kazakov–Migdal–Kontsevich model: group theory aspects. Int. J. Mod. Phys. A 10, 2015 (1995)CrossRefADSMATHMathSciNetGoogle Scholar
  21. 21.
    Jucys A.A.: Symmetric polynomials and the center of the symmetric group ring. Rep. Math. Phys. 5(1), 107–112 (1974)Google Scholar
  22. 22.
    Lando S.: Combinatorial facets of Hurwitz numbers. In: Koolen, J., Kwak, J.H., Xu, M.Y. (eds.) Applications of Group Theory to Combinatorics, pp. 109–132. Taylor and Francis Group, London (2008)Google Scholar
  23. 23.
    Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications, Encyclopaedia of Mathematical Sciences, with appendix by D. Zagier, vol. 141. Springer, New York (2004)Google Scholar
  24. 24.
    Macdonald I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1995)MATHGoogle Scholar
  25. 25.
    de Mello Koch, R., Ramgoolam, S.: From matrix models and quantum fields to Hurwitz space and the absolute Galois group. arXiv:1002.1634
  26. 26.
    Murphy G.E.: A new construction of Young’s seminormal representation of the symmetric groups. J. Algebra 69, 287–297 (1981)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Mironov A.D., Morozov A.Yu., Natanzon S.M.: Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory. Theor. Math. Phys. 166, 1–22 (2011)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7, 447–453 (2000). See also arXiv:math/0004128
  29. 29.
    Okounkov, A., Pandharipande, R.: Gromov-Witten theory, Hurwitz theory, and completed cycles. Ann. Math. 163 517–560 (2006); The equivariant Gromov–Witten theory of P 1. ibid. 163 561–605 (2006)Google Scholar
  30. 30.
    Orlov, A.Yu.: New solvable matrix integrals. Int. J. Mod. Phys. A 19(suppl 02), 276–93 (2004)Google Scholar
  31. 31.
    Orlov, A.Yu., Shiota, T.: Schur function expansion for normal matrix model and associated discrete matrix models. Phys. Lett. A 343, 384–96 (2005)Google Scholar
  32. 32.
    Orlov A.Yu., Scherbin D.M.: Hypergeometric solutions of soliton equations. Theor. Math. Phys. 128, 906–926 (2001)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Pandharipande R.: The Toda equations and the Gromov–Witten theory of the Riemann sphere. Lett. Math. Phys. 53, 59–74 (2000)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Takasaki, K.: Initial value problem for the Toda lattice hierarchy. In: Group Representation and Systems of Differential Equations. Advanced Studies in Pure Mathematics, vol. 4, pp. 139–163 (1984)Google Scholar
  35. 35.
    Takebe T.: Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy I. Lett. Math. Phys. 21, 77–84 (1991)CrossRefADSMATHMathSciNetGoogle Scholar
  36. 36.
    Ueno, K., Takasaki, K.: Toda lattice hierarchy. In: Group Representation and Systems of Differential Equations. Advanced Studies in Pure Mathematics, vol. 4, pp. 1–95 (1984)Google Scholar
  37. 37.
    Zograf, P.: Enumeration of Grothendieck’s dessins and KP hierarchy. arXiv:1312.2538 (2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre de recherches mathématiquesUniversité de MontréalMontréalCanada
  2. 2.Department of Mathematics and StatisticsConcordia UniversityMontréalCanada
  3. 3.Institute of OceanologyMoscowRussia
  4. 4.National Research University, Higher School of EconomicsInternational Laboratory of Representation Theory and Mathematical PhysicsMoscowRussia

Personalised recommendations