Advertisement

Communications in Mathematical Physics

, Volume 336, Issue 3, pp 1359–1433 | Cite as

Infinite Chiral Symmetry in Four Dimensions

  • Christopher BeemEmail author
  • Madalena Lemos
  • Pedro Liendo
  • Wolfger Peelaers
  • Leonardo Rastelli
  • Balt C. van Rees
Article

Abstract

We describe a new correspondence between four-dimensional conformal field theories with extended supersymmetry and two-dimensional chiral algebras. The meromorphic correlators of the chiral algebra compute correlators in a protected sector of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences for the spectral data, correlation functions, and central charges of any four-dimensional theory with \({\mathcal{N}=2}\) superconformal symmetry.

Keywords

Central Charge Chiral Symmetry Vector Multiplet Superconformal Index Higgs Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polyakov A.: Nonhamiltonian approach to conformal quantum field theory. Zh. Eksp. Teor. Fiz. 66, 23–42 (1974)MathSciNetGoogle Scholar
  2. 2.
    Ferrara S., Grillo A., Gatto R.: Tensor representations of conformal algebra and conformally covariant operator product expansion. Ann. Phys. 76, 161–188 (1973)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Rattazzi, R., Rychkov, V.S., Tonni, E., Vichi, A.: Bounding scalar operator dimensions in 4D CFT. JHEP 0812, 031 (2008). [arXiv:0807.0004]
  4. 4.
    El-Showk, S., Paulos, M.F., Poland, D., Rychkov, S., Simmons-Duffin, D., et. al.: Solving the 3D ising model with the conformal bootstrap. Phys. Rev. D 86, 025022 (2012) [arXiv:1203.6064]
  5. 5.
    Poland D., Simmons-Duffin D.: Bounds on 4D conformal and superconformal field theories. JHEP 1105, 017 (2012) [arXiv:1009.2087]ADSGoogle Scholar
  6. 6.
    Poland D., Simmons-Duffin D., Vichi A.: Carving out the space of 4D CFTs. JHEP 1205, 110 (2012) [arXiv:1109.5176]CrossRefADSGoogle Scholar
  7. 7.
    Beem C., Rastelli L., van Rees B.C.: The N=4 superconformal bootstrap. Phys.Rev.Lett. 111, 071601 (2013) [arXiv:1304.1803]CrossRefADSGoogle Scholar
  8. 8.
    Alday, L.F., Bissi, A.: The superconformal bootstrap for structure constants. arXiv:1310.3757
  9. 9.
    Beem, C., Rastelli, L., van Rees, B.C.: W symmetry in six dimensions. arXiv:1404.1079
  10. 10.
    Dolan F., Nirschl M., Osborn H.: Conjectures for large N superconformal N = 4 chiral primary four point functions. Nucl. Phys. B 749, 109–152 (2006). [hep-th/0601148] CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    Eden, B., Petkou, A.C., Schubert, C., Sokatchev, E.: Partial nonrenormalization of the stress tensor four point function in N = 4 SYM and AdS / CFT. Nucl. Phys. B 607, 191–212 (2001). [hep-th/0009106]
  12. 12.
    Eden, B., Sokatchev, E.: On the OPE of 1/2 BPS short operators in N = 4 SCFT(4). Nucl. Phys. B 618, 259–276 (2001). [hep-th/0106249]
  13. 13.
    Dolan F., Osborn H.: Superconformal symmetry, correlation functions and the operator product expansion. Nucl. Phys. B 629, 3–73 (2002) [hep-th/0112251]CrossRefADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    Heslop, P., Howe, P.: Four point functions in N = 4 SYM. JHEP 0301, 043 (2003). [hep-th/0211252]
  15. 15.
    Dolan, F.A., Gallot, L., Sokatchev, E.: On four-point functions of 1/2-BPS operators in general dimensions. JHEP 0409, 056 (2004). [hep-th/0405180]
  16. 16.
    Nirschl, M., Osborn, H.: Superconformal Ward identities and their solution. Nucl. Phys. B 711, 409–479 (2005). [hep-th/0407060]
  17. 17.
    Drukker, N., Plefka, J.: Superprotected n-point correlation functions of local operators in N = 4 super Yang–Mills. JHEP 0904, 052 (2009). [arXiv:0901.3653]
  18. 18.
    de Medeiros, P., Hull, C.M., Spence, B.J., Figueroa-O’Farrill, J.M.: Conformal topological Yang–Mills theory and de Sitter holography. JHEP 0208, 055 (2002). [hep-th/0111190]
  19. 19.
    Kinney, J., Maldacena, J.M., Minwalla, S., Raju, S.: An Index for 4 dimensional super conformal theories. Commun. Math. Phys. 275, 209–254 (2007). [hep-th/0510251]
  20. 20.
    Gadde, A., Rastelli, L., Razamat, S.S., Yan, W.: The 4d superconformal index from q-deformed 2d Yang–Mills. Phys. Rev. Lett. 106, 241602 (2011). [arXiv:1104.3850]
  21. 21.
    Gadde A., Rastelli L., Razamat S.S., Yan W.: Gauge Theories and Macdonald Polynomials. Commun. Math. Phys.319, 147–193 (2013) [arXiv:1110.3740]CrossRefADSzbMATHMathSciNetGoogle Scholar
  22. 22.
    Beem, C., Lemos, M., Liendo, P., Rastelli, L., van Rees, B.: To AppearGoogle Scholar
  23. 23.
    Cardy J.L.: Is there a c theorem in four-dimensions? Phys. Lett. B 215, 749–752 (1988)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Komargodski Z., Schwimmer A.: On renormalization group flows in four dimensions. JHEP 1112, 099 (2011) [arXiv:1107.3987]CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Bouwknegt P., Schoutens K.: W symmetry in conformal field theory. Phys. Rept. 223, 183–276 (1993) [hep-th/9210010]CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Johansen, A.: Infinite conformal algebras in supersymmetric theories on four manifolds. Nucl. Phys. B 436, 291–341 (1995). [hep-th/9407109]
  27. 27.
    Kapustin, A.: Holomorphic reduction of N = 2 gauge theories, Wilson-’t Hooft operators, and S-duality. hep-th/0612119
  28. 28.
    Dolan, F., Osborn, H.: On short and semi-short representations for four-dimensional superconformal symmetry. Ann. Phys. 307, 41–89 (2003). [hep-th/0209056]
  29. 29.
    Maldacena, J., Zhiboedov, A.: Constraining conformal field theories with a higher spin symmetry. J. Phys. A 46, 214011 (2013). [arXiv:1112.1016]
  30. 30.
    Argyres P.C., Seiberg N.: S-duality in N = 2 supersymmetric gauge theories. JHEP 0712, 088 (2007) [arXiv:0711.0054]CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Thielemans K.: A Mathematica package for computing operator product expansions. Int. J. Mod. Phys. C2, 787–798 (1991)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Goddard P., Olive D.I., Waterson G.: Superalgebras, symplectic bosons and the Sugawara construction. Commun. Math. Phys. 112, 591 (1987)CrossRefADSzbMATHMathSciNetGoogle Scholar
  33. 33.
    Friedan D., Martinec E.J., Shenker S.H.: Conformal invariance, supersymmetry and string theory. Nucl. Phys. B 271, 93 (1986)CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Kausch, H.G.: Curiosities at c = −2. hep-th/9510149
  35. 35.
    Bhardwaj, L., Tachikawa, Y.: Classification of 4d N = 2 gauge theories. JHEP 1312, 100 (2013). [arXiv:1309.5160]
  36. 36.
    Karabali D., Schnitzer H.J.: BRST Quantization of the Gauged WZW Action and Coset Conformal Field Theories. Nucl. Phys. B 329, 649 (1990)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Liendo, P., Pomoni, E., Rastelli, L.: The complete one-loop dilation operator of N = 2 superconformal QCD. JHEP 1207, 003 (2012). [arXiv:1105.3972]
  38. 38.
    Baggio M., de Boer J., Papadodimas K.: A non-renormalization theorem for chiral primary 3-point functions. JHEP 1207, 137 (2012) [arXiv:1203.1036]CrossRefADSGoogle Scholar
  39. 39.
    Gawedzki K., Kupiainen A.: Coset construction from functional integrals. Nucl. Phys. B 320, 625 (1989)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Cvitanovic, P.: Group theory: Birdtracks, Lie’s and exceptional groupsGoogle Scholar
  41. 41.
    Sen, A.: F theory and orientifolds. Nucl. Phys. B 475, 562–578 (1996). [hep-th/9605150]
  42. 42.
    Banks, T., Douglas, M.R., Seiberg, N.: Probing F theory with branes. Phys. Lett. B 387, 278–281 (1996). [hep-th/9605199]
  43. 43.
    Dasgupta, K., Mukhi, S.: F theory at constant coupling. Phys. Lett. B 385, 125–131 (1996). [hep-th/9606044]
  44. 44.
    Minahan, J.A., Nemeschansky, D.: An N = 2 superconformal fixed point with E(6) global symmetry. Nucl. Phys. B 482, 142–152 (1996). [hep-th/9608047]
  45. 45.
    Minahan J.A., Nemeschansky D.: Superconformal fixed points with E(n) global symmetry. Nucl. Phys. B 489, 24–46 (1997) [hep-th/9610076]CrossRefADSzbMATHMathSciNetGoogle Scholar
  46. 46.
    Aharony, O., Fayyazuddin, A., Maldacena, J.M.: The large N limit of N = 2, N = 1 field theories from three-branes in F theory. JHEP 9807, 013 (1998). [hep-th/9806159]
  47. 47.
    Gaiotto D., Neitzke A., Tachikawa Y.: Argyres-Seiberg duality and the Higgs branch. Commun. Math. Phys. 294, 389–410 (2010) [arXiv:0810.4541]CrossRefADSzbMATHMathSciNetGoogle Scholar
  48. 48.
    Aharony, O., Tachikawa, Y.: A Holographic computation of the central charges of d = 4, N = 2 SCFTs. JHEP 0801, 037 (2008). [arXiv:0711.4532]
  49. 49.
    Argyres, P.C., Wittig, J.R.: Infinite coupling duals of N = 2 gauge theories and new rank 1 superconformal field theories. JHEP 0801, 074 (2008). [arXiv:0712.2028]
  50. 50.
    Chacaltana, O., Distler, J.: Tinkertoys for Gaiotto duality. JHEP 1011, 099 (2010). [arXiv:1008.5203]
  51. 51.
    Razamat S.S.: On a modular property of N = 2 superconformal theories in four dimensions. JHEP 1210, 191 (2012) [arXiv:1208.5056]CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Argyres, P.C., Plesser, M.R., Seiberg, N.: The Moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD. Nucl. Phys. B 471, 159–194 (1996). [hep-th/9603042]
  53. 53.
    Beem, C., Peelaers, W., Rastelli, L., van Rees, B.C.: Chiral algebras of class \({\mathcal{S}}\). arXiv:1408.6522
  54. 54.
    Ademollo M., Brink L., D’Adda A., D’Auria R., Napolitano E. et al.: Dual string with U(1) color symmetry. Nucl. Phys. B 111, 77–110 (1976)CrossRefADSGoogle Scholar
  55. 55.
    Gaiotto, D.: N = 2 dualities. JHEP 1208, 034 (2012). [arXiv:0904.2715]
  56. 56.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. arXiv:0907.3987
  57. 57.
    Hanany, A., Mekareeya, N.: Tri-vertices and SU(2)’s. JHEP 1102, 069 (2011). [arXiv:1012.2119]
  58. 58.
    Gaiotto D., Maldacena J.: The Gravity duals of N = 2 superconformal field theories. JHEP 1210, 189 (2012) [arXiv:0904.4466]CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    Benini, F., Benvenuti, S., Tachikawa, Y.: Webs of five-branes and N = 2 superconformal field theories. JHEP 0909, 052 (2009). [arXiv:0906.0359]
  60. 60.
    Maruyoshi, K., Tachikawa, Y., Yan, W., Yonekura, K.: N = 1 dynamics with T N theory. JHEP 1310, 010 (2013). [arXiv:1305.5250]
  61. 61.
    Gaiotto, D., Razamat, S.S.: Exceptional Indices. JHEP 1205, 145 (2012). [arXiv:1203.5517]
  62. 62.
    Gaiotto, D., Rastelli, L., Razamat, S.S.: Bootstrapping the superconformal index with surface defects. JHEP 1301, 022 (2013). [arXiv:1207.3577]
  63. 63.
    Frenkel, E.: Lectures on the Langlands program and conformal field theory. In: Frontiers in Number Theory, Physics, and Geometry II. Springer, Berlin, pp. 387–533 (2007). [hep-th/0512172]
  64. 64.
    Gadde, A., Pomoni, E., Rastelli, L., Razamat, S.S.: S-duality and 2d topological QFT. JHEP 1003, 032 (2010). [arXiv:0910.2225]
  65. 65.
    Moore, G.W., Tachikawa, Y.: On 2d TQFTs whose values are holomorphic symplectic varieties. In: Proceeding of Symposia in Pure Mathematics, vol. 85 (2012). [arXiv:1106.5698]
  66. 66.
    Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). [arXiv:0906.3219]
  67. 67.
    Wyllard, N.: W-algebras and surface operators in N = 2 gauge theories. J. Phys. A 44, 155401 (2011). [arXiv:1011.0289]
  68. 68.
    Frenkel, E., Reshetikhin, N.: Towards deformed chiral algebras. arXiv:q-alg/9706023, p. 6023 (1997, in eprint)
  69. 69.
    Dobrev V., Petkova V.: All positive energy unitary irreducible representations of extended conformal supersymmetry. Phys. Lett. B162, 127–132 (1985)CrossRefADSMathSciNetGoogle Scholar
  70. 70.
    Kazhdan D., Lusztig G.: Representations of coxeter groups and hecke algebras. Inventiones Mathematicae 53(2), 165–184 (1979)CrossRefADSzbMATHMathSciNetGoogle Scholar
  71. 71.
    Fuchs J., Schweigert C.: Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists. Cambridge University Press, Oxford (1997)zbMATHGoogle Scholar
  72. 72.
    De Vos, K., Van Driel, P.: The Kazhdan–Lusztig conjecture for W algebras. J. Math. Phys. 37, 3587 (1996). [hep-th/9508020]
  73. 73.
    Kashiwara M., Tanisaki T.: Kazhdan–Lusztig conjecture for symmetrizable Kac–Moody Lie algebras II. Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory 2, 159–195 (1990)MathSciNetGoogle Scholar
  74. 74.
    Casian L.: Kazhdan–Lusztig multiplicity formulas for Kac–Moody algebras. Comptes Rendus de l’Academie des Sciences Serie I-Mathematique 310(6), 333–337 (1990)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christopher Beem
    • 1
    • 2
    Email author
  • Madalena Lemos
    • 3
  • Pedro Liendo
    • 3
    • 4
  • Wolfger Peelaers
    • 3
  • Leonardo Rastelli
    • 1
    • 3
  • Balt C. van Rees
    • 3
    • 5
  1. 1.Institute for Advanced StudyEinstein Dr.PrincetonUSA
  2. 2.Simons Center for Geometry and PhysicsStony Brook UniversityStony BrookUSA
  3. 3.C. N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookUSA
  4. 4.IMIP, Humboldt-Universität zu BerlinIRIS AdlershofBerlinGermany
  5. 5.Theory Group, Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations