Communications in Mathematical Physics

, Volume 336, Issue 3, pp 1109–1140 | Cite as

Incompressibility Estimates for the Laughlin Phase

Article

Abstract

This paper has its motivation in the study of the Fractional Quantum Hall Effect. We consider 2D quantum particles submitted to a strong perpendicular magnetic field, reducing admissible wave functions to those of the Lowest Landau Level. When repulsive interactions are strong enough in this model, highly correlated states emerge, built on Laughlin’s famous wave function. We investigate a model for the response of such strongly correlated ground states to variations of an external potential. This leads to a family of variational problems of a new type. Our main results are rigorous energy estimates demonstrating a strong rigidity of the response of strongly correlated states to the external potential. In particular, we obtain estimates indicating that there is a universal bound on the maximum local density of these states in the limit of large particle number. We refer to these as incompressibility estimates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABD.
    Aftalion A., Blanc X., Dalibard J.: Vortex patterns in a fast rotating Bose–Einstein condensate. Phys. Rev. A 71, 023611 (2005)CrossRefADSGoogle Scholar
  2. ABN1.
    Aftalion A., Blanc X., Nier F.: Vortex distribution in the lowest Landau level. Phys. Rev. A 73, 011601(R) (2006)CrossRefADSGoogle Scholar
  3. ABN2.
    Aftalion A., Blanc X., Nier F.: Lowest Landau level functionals and Bargmann spaces for Bose– Einstein condensates. J. Funct. Anal. 241, 661–702 (2006)CrossRefMATHMathSciNetGoogle Scholar
  4. BF.
    Bieri S., Fröhlich J.: Physical principles underlying the quantum Hall effect. C. R. Phys. 12, 332–346 (2011)CrossRefADSGoogle Scholar
  5. BCR.
    Boyarsky A., Cheianov V.V., Ruchayskiy O.: Microscopic construction of the chiral Luttinger liquid theory of the quantum Hall edge. Phys. Rev. B 70, 235309 (2004)CrossRefADSGoogle Scholar
  6. CLMP.
    Caglioti E., Lions P.L., Marchioro C., Pulvirenti M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)CrossRefADSMATHMathSciNetGoogle Scholar
  7. Car.
    Carlen E.: Some integral identities and inequalities for entire functions and their application to the coherent state transform. J. Funct. Anal. 97, 231–249 (1991)CrossRefMATHMathSciNetGoogle Scholar
  8. Cif.
    Ciftja O.: Monte Carlo study of Bose Laughlin wave function for filling factors 1/2, 1/4 and 1/6. Europhys. Lett. 74, 486–492 (2006)CrossRefADSGoogle Scholar
  9. DF.
    Diaconis P., Freedman D.: Finite exchangeable sequences. Ann. Probab. 8, 754–764 (1980)Google Scholar
  10. Fre.
    Freedman D.: A remark on the difference between sampling with and without replacement. J. Am. Stat. Assoc. 73, 681 (1977)CrossRefGoogle Scholar
  11. Gir.
    Girvin S.: Introduction to the fractional quantum Hall effect. Sémin. Poincaré 2, 54–74 (2004)Google Scholar
  12. Goe.
    Goerbig, M.O.: Quantum Hall effects. arXiv:0909.1998 (2009)
  13. Gol.
    Golse, F.: On the dynamics of large particle systems in the mean field limit. arXiv:1301.5494 (2013)
  14. HS.
    Hewitt E., Savage L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)CrossRefMATHMathSciNetGoogle Scholar
  15. Jai.
    Jain J.K.: The role of analogy in unraveling the fractional quantum Hall effect mystery. Phys. E 20, 79–88 (2003)CrossRefGoogle Scholar
  16. Kie1.
    Kiessling M.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure. Appl. Math. 46, 27–56 (1993)CrossRefMATHMathSciNetGoogle Scholar
  17. KS.
    Kiessling M., Spohn H.: A note on the eigenvalue density of random matrices. Commun. Math. Phys. 199, 683–695 (1999)CrossRefADSMATHMathSciNetGoogle Scholar
  18. Lau.
    Laughlin R.B.: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)CrossRefADSGoogle Scholar
  19. Lau2.
    Laughlin, R.B.: Elementary theory: the incompressible quantum fluid. In: Prange, R.E., Girvin, S.M. (eds.) The Quantum Hall Effect, Springer, Heidelberg (1987)Google Scholar
  20. LNW.
    Lee P.A., Nagaosa N., Wen X.G.: Doping a Mott insulator: physics of high temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006)CrossRefADSGoogle Scholar
  21. LFS.
    Levkivskyi I.P., Fröhlich J., Sukhorukov E.V.: Theory of fractional quantum Hall interferometers. Phys. Rev. B 86, 245105 (2012)CrossRefADSGoogle Scholar
  22. LS.
    Lewin M., Seiringer R.: Strongly correlated phases in rapidly rotating Bose gases. J. Stat. Phys. 137, 1040–1062 (2009)CrossRefADSMATHMathSciNetGoogle Scholar
  23. LL.
    Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. AMS, Providence (1997)Google Scholar
  24. LSY.
    Lieb E.H., Seiringer R., Yngvason J.: The Yrast line of a rapidly rotating Bose gas: the Gross– Pitaevskii regime. Phys. Rev. A 79, 063626 (2009)CrossRefADSGoogle Scholar
  25. Lio.
    Lions, P.-L.: Mean-field games and applications. Lectures at the Collège de France (2007)Google Scholar
  26. MS.
    Messer J., Spohn H.: Statistical mechanics of the isothermal Lane– Emden equation. J. Stat. Phys. 29, 561–578 (1982)CrossRefADSMathSciNetGoogle Scholar
  27. MF.
    Morris A.G., Feder D.L.: Gaussian potentials facilitate access to quantum Hall states in rotating Bose gases. Phys. Rev. Lett. 99, 240401 (2007)CrossRefADSGoogle Scholar
  28. PB.
    Papenbrock T., Bertsch G.F.: Rotational spectra of weakly interacting Bose– Einstein condensates. Phys. Rev. A 63, 023616 (2001)CrossRefADSGoogle Scholar
  29. RRD.
    Roncaglia, M., Rizzi, M., Dalibard, J.: From rotating atomic rings to quantum Hall states. Sci. Rep. 1 (2011). doi:10.1038/srep00043. http://www.nature.com
  30. RS.
    Rougerie, N., Serfaty, S.: Higher dimensional Coulomb gases and renormalized energy functionals. arXiv:1307.2805 (2013)
  31. RSY1.
    Rougerie N., Serfaty S., Yngvason J.: Quantum Hall states of bosons in rotating anharmonic traps. Phys. Rev. A 87, 023618 (2013)CrossRefADSGoogle Scholar
  32. RSY2.
    Rougerie, N., Serfaty, S., Yngvason, J.: Quantum Hall phases and plasma analogy in rotating trapped Bose gases. J. Stat. Phys. (2013). doi:10.1007/s10955-013-0766-0
  33. ST.
    Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wissenchaften, vol. 316. Springer, Berlin (1997)Google Scholar
  34. SS.
    Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. arxiv:1201.3503 (2012)
  35. STG.
    Stormer H.L., Tsui D.C., Gossard A.C.: The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999)CrossRefGoogle Scholar
  36. TK.
    Trugman S.A., Kivelson S.: Exact results for the fractional quantum Hall effect with general interactions. Phys. Rev. B 31, 5280 (1985)CrossRefADSGoogle Scholar
  37. Vie.
    Viefers S.: Quantum Hall physics in rotating Bose– Einstein condensates. J. Phys. C 12, 123202 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Université Grenoble 1 and CNRS, LPMMC, UMR 5493GrenobleFrance
  2. 2.Fakultät für PhysikUniversität WienViennaAustria
  3. 3.Erwin Schrödinger Institute for Mathematical PhysicsViennaAustria

Personalised recommendations