Advertisement

Communications in Mathematical Physics

, Volume 336, Issue 2, pp 953–986 | Cite as

Boundary Quantum Knizhnik–Zamolodchikov Equations and Bethe Vectors

  • Nicolai Reshetikhin
  • Jasper Stokman
  • Bart Vlaar
Article

Abstract

Solutions to boundary quantum Knizhnik–Zamolodchikov equations are constructed as bilateral sums involving “off-shell” Bethe vectors in case the reflection matrix is diagonal and only the 2-dimensional representation of \({{\mathcal{U}}_q(\widehat{{\mathfrak{sl}}}_2)}\) is involved. We also consider their rational and classical degenerations.

Keywords

Meromorphic Function Vertex Operator Spin Chain Meromorphic Solution Monodromy Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babujian, H.M., Flume, R.: Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik–Zamolodchikov equations. Modern Phys. Lett. A 9(22), 2029–2039 (1994)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bailey, W.N.: Series of hypergeometric type which are infinite in both directions. Quart. J. Math. (Oxford) 7, 105–115 (1936)CrossRefADSGoogle Scholar
  3. 3.
    Bajnok, Z., Palla, L., Takács, G.: On the boundary form factor program. Nucl. Phys. B 750(3), 179–212 (2006)CrossRefADSzbMATHGoogle Scholar
  4. 4.
    Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, Inc., London (1982)zbMATHGoogle Scholar
  5. 5.
    Buchstaber, V.M., Felder, G., Veselov, A.P.: Elliptic Dunkl operators, root systems, and functional equations. Duke Math. J. 76(3), 885–911 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cardy, J.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514–532 (1984)CrossRefADSGoogle Scholar
  7. 7.
    Cherednik, I.: Quantum Knizhnik–Zamolodchikov equations and affine root systems. Comm. Math. Phys. 150, 109–136 (1992)CrossRefADSzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cherednik, I.: Factorizing particles on a half line, and root systems. Theoret. Math. Phys. 61(1), 977–983 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Cherednik, I.: Monodromy representations for the generalized KZ equations and Hecke algebras. Publ. Res. Inst. Math. Sci. Kyoto Univ. 27, 711–726 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cherednik, I.: A unification of Knizhnik–Zamolodchikov and Dunkl operators via affine Hecke algebras. Invent. Math. 106, 411–431 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    Cherednik, I.: Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald’s operators. Int. Math. Res. Not. 9 171–180 (1992)Google Scholar
  12. 12.
    Cherednik, I.: Induced representations of double affine Hecke algebras and applications Math. Res. Lett. 1, 319–337 (1994)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Corrigan, E., Dorey, P.E., Rietdijk, R.H., Sasaki, R.: Affine Toda field theory on a half-line. Phys. Lett. B 333(1-2), 83–91 (1994)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Delfino, G., Mussardo, G., Simonetti, P.: Scattering theory and correlation functions in statistical models with a line of defect. Nucl. Phys. B 432(3), 518–550 (1994)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Di Francesco, Ph., Zinn-Justin, P.: Quantum Knizhnik–Zamolodchikov equation: reflecting boundary conditions and combinatorics. J. Stat. Mech. Theory Exp. 12, P12009 (2007)Google Scholar
  16. 16.
    Dougall, J.: On Vandermonde’s theorem and some more general expansions. Proc. Edin. Math. Soc. 25, 114–132 (1906)CrossRefGoogle Scholar
  17. 17.
    Etingof, P.I., Frenkel, I.B., Kirillov, Jr. A.A.: Lectures on representation theory and Knizhnik–Zamolodchikov equations, Math. Surveys and Monographs, 58. Am. Math. Soc., Providence, RI (1998)Google Scholar
  18. 18.
    Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: Quantum inverse problem method. I. Theoret. Mat. Fiz. 40(2), 194–220 (1979)MathSciNetGoogle Scholar
  19. 19.
    Feigin, B., Frenkel, E.: Semi-infinite Weil complex and the Virasoro algebra Comm. Math. Phys. 137(3), 617–639 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    Filali, G., Kitanine, N.: Spin chains with non-diagonal boundaries and trigonometric SOS model with reflecting end. SIGMA 7, Paper 012, 22 pages (2011)Google Scholar
  21. 21.
    Frenkel, E., E., Ben-Zvi, D.: Vertex algebras and algebraic curves 2nd edn, Mathematical Surveys and Monographs, 88, Am. Math. Soc., Providence, RI (2004)Google Scholar
  22. 22.
    Frenkel, I., Reshetikhin, N.: Quantum affine algebras and holonomic difference equations. Comm. Math. Phys. 146, 1–60 (1992)CrossRefADSzbMATHMathSciNetGoogle Scholar
  23. 23.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series 2nd edn, Encycl. Math. Appl. 96, Cambridge University Press (2004)Google Scholar
  24. 24.
    Ghoshal, S., Zamolodchikov, A.: Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory. Int. J. Mod. Phys. A 9(21), 3841–3885 (1994)CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    Jimbo, M., Kedem, R., Kojima, T., Konno, H., Miwa, T.: XXZ chain with a boundary. Nucl. Phys. B 441(3), 437–470 (1995)CrossRefADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    Jimbo, M., Kedem, R., Konno, H., Miwa, T., Weston, R.: Difference equations in spin chains with a boundary. Nucl. Phys. B 448(3), 429–456 (1995)CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    Kasatani, M.: Boundary quantum Knizhnik–Zamolodchikov equation. In: New trends in quantum integrable systems, 157–171, World sci. Publ., Hackensack, NJ (2011)Google Scholar
  28. 28.
    Kasatani, M., Takeyama, Y.: The quantum Knizhnik–Zamolodchikov equation and non-symmetric Macdonald polynomials. Funkcial. Ekvac. 50, 491–509 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino Model in two dimensions. Nucl. Phys. B 247(1), 83–103 (1984)CrossRefADSzbMATHMathSciNetGoogle Scholar
  30. 30.
    Kojima, T.: Free field approach to diagonalization of boundary transfer matrix: recent advances. J. Phys. Conf. Ser. 284, 012041 (2011)CrossRefADSGoogle Scholar
  31. 31.
    Mezincescu, L., Nepomechie, R.I.: Integrable open spin chains with non-symmetric R-matrices. J. Phys. A Math. Gen. 24, L17–L23 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  32. 32.
    Mezincescu, L., Nepomechie, R.I.: Fusion procedure for open chains. J. Phys. A Math. Gen. 25, 2533–2543 (1992)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Pasquier, V.: Quantum incompressibility and Razumov Stroganov type conjectures. Ann. Henri Poincaré 7, 397–421 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  34. 34.
    Reshetikhin, N.: Jackson-type integrals, Bethe vectors, and solutions to a difference analog of the Knizhnik–Zamolodchikov system. Lett. Math. Phys. 26, 153–165 (1992)CrossRefADSzbMATHMathSciNetGoogle Scholar
  35. 35.
    Reshetikhin, N.: Integrable models of quantum one-dimensional magnets with \({{\rm O}(n)}\) and \({{\rm Sp}(2k)}\) symmetry. Theoret. Math. Phys. 63(3), 555–569 (1985)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Reshetikhin, N.: The algebraic Bethe ansatz for \({{\rm SO}(N)}\) -invariant transfer matrices (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 169 (1988), Voprosy Kvant. Teor. Polya i Statist. Fiz. 8, 122–140, 189; transl. in J. Soviet Math. 54(3), 940–951 (1991)Google Scholar
  37. 37.
    Reshetikhin, N., Stokman, J., Vlaar, B.: Boundary quantum Knizhnik–Zamolodchikov equations and fusion. Ann. Henri Poincaré (to appear). arXiv:1404.5492
  38. 38.
    Reshetikhin, N., Varchenko, A.: Quasiclassical asymptotics of solutions to the KZ equations. In: Geometry, topology, physics, 293–322, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA (1995)Google Scholar
  39. 39.
    Ruijsenaars, S.N.M.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 38(2), 1069–1146 (1997)CrossRefADSzbMATHMathSciNetGoogle Scholar
  40. 40.
    Schechtman, V.V., Varchenko, A.N.: Arrangements of hyperplanes and Lie algebra homology. Invent. Math. 106(1), 139–194 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  41. 41.
    Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A Math. Gen. 21, 2375–2389 (1988)CrossRefADSzbMATHMathSciNetGoogle Scholar
  42. 42.
    Smirnov, F.: A general formula for soliton form factors in the quantum sine-Gordon model. J. Phys. A 19(10), L575–L578 (1986)CrossRefADSzbMATHGoogle Scholar
  43. 43.
    Stokman, J.V.: Quantum affine Knizhnik–Zamolodchikov equations and quantum spherical functions, I. Int. Math. Res. Not. IMRN 5, 1023–1090 (2011)Google Scholar
  44. 44.
    Stokman, J., Vlaar, B.: Koornwinder polynomials and the XXZ spin chain (Dedicated to the 80th birthday of Dick Askey). Journal of Approximation Theory (2014), doi: 10.1016/j.jat.2014.03.003, arXiv:1310.5545
  45. 45.
    Takhtadzhan, L.A., Faddeev, L.D.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russian Math. Surveys 34(5), 11–68 (1979)CrossRefADSGoogle Scholar
  46. 46.
    Varchenko, A.N., Tarasov, V.O.: Jackson integral representations for solutions to the quantized Knizhnik–Zamolodchikov equation. St. Petersburg Math. J. 6(2), 275–313 (1995)MathSciNetGoogle Scholar
  47. 47.
    Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory on \({\mathbf{P}^1}\) and monodromy representations of braid group. Adv. Stud. Pure Math. 16, 297–372 (1988)MathSciNetGoogle Scholar
  48. 48.
    Weston, R.: Correlation functions and the boundary qKZ equation in a fractured XXZ chain. J. Stat. Mech. Theory Exp. 12, P12002 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nicolai Reshetikhin
    • 1
    • 2
    • 3
  • Jasper Stokman
    • 2
    • 4
  • Bart Vlaar
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.KdV Institute for MathematicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.ITMO UniversitySaint PetersburgRussia
  4. 4.IMAPP, Radboud UniversityNijmegenThe Netherlands

Personalised recommendations