Communications in Mathematical Physics

, Volume 335, Issue 2, pp 739–757 | Cite as

Non-Computable Impressions of Computable External Rays of Quadratic Polynomials

  • Ilia Binder
  • Cristobal Rojas
  • Michael Yampolsky


We discuss computability of impressions of prime ends of compact sets. In particular, we construct quadratic Julia sets which possess explicitly described non-computable impressions.


Harmonic Measure External Argument Computable Sequence Siegel Disk Conformal Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avila A., Buff X., Chéritat A.: Siegel disks with smooth boundaries. Acta Math. 193(1), 1–30 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Banach, S., Mazur, S.: Sur les fonctions caluclables. Ann. Polon. Math. 16 (1937)Google Scholar
  3. 3.
    Binder I., Braverman M., Rojas C., Yampolsky M.: Computability of Brolin–Lyubich measure. Commun. Math. Phys. 308, 743–771 (2011)CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Binder I., Braverman M., Yampolsky M.: Filled Julia sets with empty interior are computable. J. FoCM 7, 405–416 (2007)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Binder, I., Braverman, M., Yampolsky, M.: On computational complexity of Riemann mapping. Arkiv för Matematik 45(2), 221–239 (2007)Google Scholar
  6. 6.
    Binder, I., Rojas, C., Yampolsky, M.: Computable caratheodory theory. Adv. Math. 265, 280–312 (2014)Google Scholar
  7. 7.
    Braverman M., Yampolsky M.: Non-computable Julia sets. J. Am. Math. Soc. 19(3), 551–578 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Braverman M., Yampolsky M.: Computability of Julia Sets. Algorithms and Computation in Mathematics, vol. 23. Springer, Berlin (2008)Google Scholar
  9. 9.
    Braverman M., Yampolsky M.: Computability of Julia sets. Mosc. Math. J. 8, 185–231 (2008)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Braverman M., Yampolsky M.: Constructing locally connected non-computable Julia sets. Commun. Math. Phys. 291, 513–532 (2009)CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    Brjuno, A.D.: Analytic forms of differential equations. Trans. Mosc. Math. Soc. 25, 131–288 (1971)Google Scholar
  12. 12.
    Buff, X., Chéritat, A.: Quadratic Siegel disks with smooth boundaries. Technical Report 242, Univ. Toulouse (2002)Google Scholar
  13. 13.
    Buff X., Chéritat A.: The Brjuno function continuously estimates the size of quadratic Siegel disks. Ann. Math. 164(1), 265–312 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Bullett S., Sentenac P.: Ordered orbits of the shift, square roots, and the devil’s staircase. Math. Proc. Camb. Phil. Soc. 115, 451–481 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hoyrup, M., Kolak, A., Longo, G.: Computability and the morphological complexity of some dynamics on continuous domains. Theoret. Comp. Sci. 398, 170–182 (2008)Google Scholar
  16. 16.
    Marmi S., Moussa P., Yoccoz J.-C.: The Brjuno functions and their regularity properties. Commun. Math. Phys. 186, 265–293 (1997)CrossRefADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    Mazur S.: Computable Analysis, vol. 33. Rozprawy Matematyczne, Warsaw (1963)Google Scholar
  18. 18.
    Milnor, J.: Periodic orbits, external rays and the Mandelbrot set; an expository account. Astérisque 261, 277–333 (2000)Google Scholar
  19. 19.
    Milnor, J.: Dynamics in One Complex Variable. Introductory Lectures, 3rd edn. Princeton University Press, Princeton (2006)Google Scholar
  20. 20.
    Petersen C.: Local connectivity of some Julia sets containing a circle with an irrational rotation. Acta Math. 177, 163–224 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Petersen C., Zakeri S.: On the Julia set of a typical quadratic polynomial with a Siegel disk. Ann. Math. 159(1), 1–52 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975). With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXVGoogle Scholar
  23. 23.
    Pommerenke C.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  24. 24.
    Siegel C.: Iteration of analytic functions. Ann. Math. 43(2), 607–612 (1942)CrossRefzbMATHGoogle Scholar
  25. 25.
    Sullivan D.: Conformal dynamical systems. In: Palis (ed.) Geometric Dynamics. Lecture Notes Mathematics, vol. 1007, pp. 725–752. Springer, Berlin (1983)Google Scholar
  26. 26.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. In: Proceedings, London Mathematical Society, pp. 230–265 (1936)Google Scholar
  27. 27.
    Yampolsky M.: Complex bounds for renormalization of critical circle maps. Ergod. Theory Dyn. Syst. 19, 227–257 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Yoccoz, J.-C.: Petits diviseurs en dimension 1. S.M.F., Astérisque 231 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ilia Binder
    • 1
  • Cristobal Rojas
    • 2
  • Michael Yampolsky
    • 1
  1. 1.University of TorontoTorontoCanada
  2. 2.Universidad Andres BelloSantiagoChile

Personalised recommendations