Communications in Mathematical Physics

, Volume 334, Issue 2, pp 867–887 | Cite as

Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity



The fully quantum reverse Shannon theorem establishes the optimal rate of noiseless classical communication required for simulating the action of many instances of a noisy quantum channel on an arbitrary input state, while also allowing for an arbitrary amount of shared entanglement of an arbitrary form. Turning this theorem around establishes a strong converse for the entanglement-assisted classical capacity of any quantum channel. This paper proves the strong converse for entanglement-assisted capacity by a completely different approach and identifies a bound on the strong converse exponent for this task. Namely, we exploit the recent entanglement-assisted “meta-converse” theorem of Matthews and Wehner, several properties of the recently established sandwiched Rényi relative entropy (also referred to as the quantum Rényi divergence), and the multiplicativity of completely bounded p-norms due to Devetak et al. The proof here demonstrates the extent to which the Arimoto approach can be helpful in proving strong converse theorems, it provides an operational relevance for the multiplicativity result of Devetak et al., and it adds to the growing body of evidence that the sandwiched Rényi relative entropy is the correct quantum generalization of the classical concept for all α > 1.


Mutual Information Success Probability Quantum Channel Density Operator Relative Entropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 20–30 (1998). arXiv:quant-ph/9806029
  2. 2.
    Arimoto S.: On the converse to the coding theorem for discrete memoryless channels. IEEE Trans. Inf. Theory 19, 357–359 (1973)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Audenaert, K.M.R., Calsamiglia, J., Muñoz Tapia, R., Bagan, E., Masanes, Ll., Acin, A., Verstraete, F.: Discriminating states: the quantum Chernoff bound. Phys. Rev. Lett. 98, 160501 (2007). arXiv:quant-ph/0610027
  4. 4.
    Audenaert K.M.R., Nussbaum M., Szkoła A., Verstraete F.: Asymptotic error rates in quantum hypothesis testing. Commun. Math. Phys. 279(1), 251–283 (2008). arXiv:0708.4282 ADSCrossRefMATHGoogle Scholar
  5. 5.
    Beigi S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54(12), 122202 (2013) arXiv:1306.5920 ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bennett C.H., Devetak I., Harrow A.W., Shor P.W., Winter A.: Quantum reverse Shannon theorem. IEEE Trans. Inf. Theory 60(5), 2926–2959 (2014) arXiv:0912.5537 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83, 3081–3084 (1999) arXiv:quant-ph/9904023 ADSCrossRefGoogle Scholar
  8. 8.
    Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48(10), 2637–2655 (2002). arXiv:quant-ph/0106052
  9. 9.
    Berta, M., Christandl, M., Renner, R.: The quantum reverse Shannon theorem based on one-shot information theory. Commun. Math. Phys. 306(3), 579–615 (2011). arXiv:0912.3805
  10. 10.
    Bowen, G.: Quantum feedback channels. IEEE Trans. Inf. Theory 50, 2429–2433 (2004). arXiv:quant-ph/0209076
  11. 11.
    Brun, T.A., Devetak, I., Hsieh, M.-H.: Correcting quantum errors with entanglement. Science. 314(5798), 436–439 (2006). arXiv:quant-ph/0610092
  12. 12.
    Brun, T.A., Devetak, I., Hsieh, M.-H.: Catalytic quantum error correction. IEEE Trans. Inf. Theory 60(6), 3073–3089 (2014). arXiv:quant-ph/0608027
  13. 13.
    Carlen E.A.: Trace inequalities and quantum entropy: an introductory course. Contemp. Math. 529, 73–140 (2010)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Carlen E.A., Lieb E.H.: A Minkowski type trace inequality and strong subadditivity of the quantum entropy II. Lett. Math. Phys. 83(2), 107–126 (2008) arXiv:0710.4167 ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Datta N., Hsieh M.-H., Wilde M.M.: Quantum rate distortion, reverse Shannon theorems, and source-channel separation. IEEE Trans. Inf. Theory 59, 615–630 (2013) arXiv:1108.4940 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Datta, N., Leditzky, F.: A limit of the quantum R ényi divergence. J. Phys. A Math. Theor. 47(4), 045304 (2014). arXiv:1308.5961
  17. 17.
    Devetak, I., Junge, M., King, C., Ruskai, M.B.: Multiplicativity of completely bounded p-norms implies a new additivity result. Commun. Math. Phys. 266, 37–63 (2006). arXiv:quant-ph/0506196
  18. 18.
    Frank, R.L., Lieb, E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54, 122201 (2013). arXiv:1306.5358
  19. 19.
    García-Patrón, R., Pirandola, S., Lloyd, S., Shapiro, J.H.: Reverse coherent information. Phys. Rev. Lett. 102(21), 210501 (2009). arXiv:0808.0210
  20. 20.
    Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005). arXiv:quant-ph/0408063
  21. 21.
    Hayashi M.: Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding. Phys. Rev. A 76, 062301 (2007) arXiv:quant-ph/0611013 ADSCrossRefGoogle Scholar
  22. 22.
    Holevo A.S.: On entanglement assisted classical capacity. J. Math. Phys. 43(9), 4326–4333 (2002) arXiv:quant-ph/0106075 ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Hsieh, M.-H., Brun, T.A., Devetak, I.: Entanglement-assisted quantum quasicyclic low-density parity-check codes. Phys. Rev. A 79(3), 032340 (2009). arXiv:0803.0100
  24. 24.
    Hsieh, M.-H., Yen, W.-T., Hsu, L.-Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57(3), 1761–1769 (2011). arXiv:0906.5532
  25. 25.
    Jain, R., Ji, Z., Upadhyay, S., Watrous, J.: QIP = PSPACE. Commun. ACM 53(12), 102–109 (2010). arXiv:0905.1300
  26. 26.
    Jencova, A.: A relation between completely bounded norms and conjugate channels. Commun. Math. Phys. 266(1), 65–70 (2006). arXiv:quant-ph/0601071
  27. 27.
    Kitaev A.: Quantum computations: algorithms and error correction. Russian Math. Surv. 52(6), 1191–1249 (1997)ADSCrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Koenig, R., Wehner, S.: A strong converse for classical channel coding using entangled inputs. Phys. Rev. Lett. 103, 070504 (2009). arXiv:0903.2838
  29. 29.
    Koenig R., Wehner S., Wullschleger J.: Unconditional security from noisy quantum storage. IEEE Trans. Inf. Theory 58(3), 1962–1984 (2012) arXiv:0906.1030 CrossRefGoogle Scholar
  30. 30.
    Lieb E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11, 267–288 (1973)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schroedinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, pp. 269–297. Princeton University Press, Princeton (1976)Google Scholar
  32. 32.
    Matthews, W., Wehner, S.: Finite blocklength converse bounds for quantum channels (2012). arXiv: 1210.4722
  33. 33.
    Morgan C., Winter A.: strong” converse for the quantum capacity of degradable channels. IEEE Trans. Inf. Theory 60(1), 317–333 (2014) arXiv:1301.4927 CrossRefMathSciNetGoogle Scholar
  34. 34.
    Mosonyi M., Hiai F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 57(4), 2474–2487 (2011) arXiv:0912.1286 CrossRefMathSciNetGoogle Scholar
  35. 35.
    Mosonyi, M., Ogawa, T.: Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies (2013). arXiv:1309.3228
  36. 36.
    Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013) arXiv:1306.3142 ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    Nagaoka, H.: The converse part of the theorem for quantum Hoeffding bound (2006). arXiv:quant-ph/0611289
  38. 38.
    Nussbaum M., Szkoła A.: The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Stat. 37(2), 1040–1057 (2009) arXiv:quant-ph/0607216 CrossRefMATHGoogle Scholar
  39. 39.
    Ogawa, T., Nagaoka, H.: Strong converse to the quantum channel coding theorem. IEEE Trans. Inf. Theory 45(7), 2486–2489 (1999). arXiv:quant-ph/9808063
  40. 40.
    Polyanskiy, Y., Verdú, S.: Arimoto channel coding converse and Rényi divergence. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computation, pp. 1327–1333 (2010)Google Scholar
  41. 41.
    Rosgen, B., Watrous, J.: On the hardness of distinguishing mixed-state quantum computations. In: Proceedings of the 20th IEEE Conference on Computational Complexity, pp. 344–354 (2005). arXiv:cs/0407056
  42. 42.
    Sacchi M.F.: Entanglement can enhance the distinguishability of entanglement-breaking channels. Phys. Rev. A 72, 014305 (2005) arXiv:quant-ph/0505174 ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Sharma, N., Warsi, N.A.: On the strong converses for the quantum channel capacity theorems (2012). arXiv:1205.1712
  45. 45.
    Sion, M.: On general minimax theorems. Pac. J. Math. 8(1), 171–176 (1958)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Watrous, J.: Simpler semidefinite programs for completely bounded norms. Chicago J. Theor. Comput. Sci. 2013(8), 1–19 (2013). arXiv:1207.5726
  47. 47.
    Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). arXiv:1106.1445
  48. 48.
    Wilde M.M., Hsieh M.-H., Babar Z.: Entanglement-assisted quantum turbo codes. IEEE Trans. Inf. Theory 60(2), 1203–1222 (2013) arXiv:1010.1256v3 CrossRefMathSciNetGoogle Scholar
  49. 49.
    Wilde M.M., Winter A., Yang D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014) arXiv:1306.1586 ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Hearne Institute for Theoretical Physics, Center for Computation and TechnologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations