Communications in Mathematical Physics

, Volume 335, Issue 1, pp 445–475 | Cite as

Anomalies of Dirac Type Operators on Euclidean Space

Article

Abstract

We develop by example a type of index theory for non-Fredholm operators. A general framework using cyclic homology for this notion of index was introduced in a separate article (Carev and Kaad, Topological invariance of the homological index. arXiv:1402.0475 [math.KT], 2014) where it may be seen to generalise earlier ideas of Carey–Pincus and Gesztesy–Simon on this problem. Motivated by an example in two dimensions in Bollé et al. (J Math Phys 28:1512–1525, 1987) we introduce in this paper a class of examples of Dirac type operators on \({\mathbb{R}^{2n}}\) that provide non-trivial examples of our homological approach. Our examples may be seen as extending old ideas about the notion of anomaly introduced by physicists to handle topological terms in quantum action principles, with an important difference, namely, we are dealing with purely geometric data that can be seen to arise from the continuous spectrum of our Dirac type operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BGG+87.
    Bollé D., Gesztesy F., Grosse H., Schweiger W., Simon B.: Witten index, axial anomaly, and Kreĭn’s spectral shift function in supersymmetric quantum mechanics. J. Math. Phys. 28(7), 1512–1525 (1987)CrossRefADSMATHMathSciNetGoogle Scholar
  2. BLCU91.
    Blackadar B., Cuntz J.: Differential Banach algebra norms and smooth subalgebras of c *-algebras. J. Oper. Theory 26(2), 255–282 (1991)MATHMathSciNetGoogle Scholar
  3. CAKA14.
    Carey, A., Kaad, J.: Topological invariance of the homological index (2014). arXiv:1402.0475 [math.KT]
  4. CAL78.
    Callias C.: Axial anomalies and index theorems on open spaces. Commun. Math. Phys. 62(3), 213–234 (1978)CrossRefADSMATHMathSciNetGoogle Scholar
  5. CAPI86.
    Carey, R.W., Pincus, J.D.: Index theory for operator ranges and geometric measure theory, Geometric measure theory and the calculus of variations (Arcata, Califorina, 1984), Proceedings of Symposia in Pure Mathematics, vol.44, pp.149–161. American Mathematical Society, Providence, RI (1986)Google Scholar
  6. CGP+14.
    Carey, A., Gesztesy, F., Potapov, D., Sukochev, F., Tomilov, Y.: On the Witten index in terms of spectral shift functions. arXiv:1404.0740 [math.SP]
  7. COMO95.
    Connes A., Moscovici H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. 5(2), 174–243 (1995)CrossRefMATHMathSciNetGoogle Scholar
  8. GLMST11.
    Gesztesy F., Latushkin Yu., Makarov K., Sukochev F., Tomilov Yu.: The index formula and the spectral shift function for relatively trace class perturbations. Adv. Math. 227(1), 319–420 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. GESI88.
    Gesztesy F., Simon B.: Topological invariance of the Witten index. J. Funct. Anal. 79(1), 91–102 (1988)CrossRefMATHMathSciNetGoogle Scholar
  10. GOKR69.
    Gohberg, I.C., Kreĭn, M.G.: Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence, RI (1969)Google Scholar
  11. LOD98.
    Loday, J.-L.: Cyclic homology, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301. Springer, Berlin (1998). Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz PirashviliGoogle Scholar
  12. RUD73.
    Rudin, W.: Functional analysis, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York (1973)Google Scholar
  13. SIM05.
    Simon, B.: Trace ideals and their applications, 2nd edn. Mathematical Surveys and Monographs, vol. 120. American Mathematical Society, Providence, RI (2005)Google Scholar
  14. WIT82.
    Witten E.: Constraints on supersymmetry breaking. Nucl. Phys. B 202(2), 253–316 (1982)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia
  2. 2.Department of PhysicsUniversity of ViennaViennaAustria
  3. 3.International School of Advanced Studies (SISSA)TriesteItaly

Personalised recommendations