Communications in Mathematical Physics

, Volume 333, Issue 3, pp 1225–1239 | Cite as

Approximate Controllability, Exact Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems

  • Ugo BoscainEmail author
  • Jean-Paul Gauthier
  • Francesco Rossi
  • Mario Sigalotti


We study the controllability of a closed control-affine quantum system driven by two or more external fields. We provide a sufficient condition for controllability in terms of existence of conical intersections between eigenvalues of the Hamiltonian in dependence of the controls seen as parameters. Such spectral condition is structurally stable in the case of three controls or in the case of two controls when the Hamiltonian is real. The spectral condition appears naturally in the adiabatic control framework and yields approximate controllability in the infinite-dimensional case. In the finite-dimensional case it implies that the system is Lie-bracket generating when lifted to the group of unitary transformations, and in particular that it is exactly controllable. Hence, Lie algebraic conditions are deduced from purely spectral properties.

We conclude the article by proving that approximate and exact controllability are equivalent properties for general finite-dimensional quantum systems.


Compact Group Conical Intersection Spectral Condition Exact Controllability Approximate Controllability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adami, R., Boscain, U.: Controllability of the Schrödinger equation via intersection of eigenvalues. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 1080–1085 (2005)Google Scholar
  2. 2.
    Albertini F., D’Alessandro D.: Notions of controllability for bilinear multilevel quantum systems. IEEE Trans. Automat. Control 48(8), 1399–1403 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Ball J.M., Marsden J.E., Slemrod M.: Controllability for distributed bilinear systems. SIAM J. Control Optim. 20(4), 575–597 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Barut A.O., Rączka R.: Theory of Group Representations and Applications, 2nd edn. World Scientific Publishing Co., Singapore (1986)CrossRefzbMATHGoogle Scholar
  5. 5.
    Beauchard K.: Local controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. (9) 84(7), 851–956 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Beauchard K., Coron J.-M.: Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232(2), 328–389 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Beauchard K., Laurent C.: Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl. 94(5), 520–554 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Beauchard K., Nersesyan V.: Semi-global weak stabilization of bilinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 348(19–20), 1073–1078 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bloch A.M., Brockett R.W., Rangan C.: Finite controllability of infinite-dimensional quantum systems. IEEE Trans. Automat. Control 55(8), 1797–1805 (2010)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Born M., Fock V.: Beweis des adiabatensatzes. Zeitschrift für Physik A Hadrons Nuclei 51(3–4), 165–180 (1928)ADSzbMATHGoogle Scholar
  11. 11.
    Boscain U., Caponigro M., Chambrion T., Sigalotti M.: A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule. Comm. Math. Phys. 311(2), 423–455 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Boscain U., Caponigro M., Sigalotti M.: Multi-input Schrödinger equation: controllability, tracking, and application to the quantum angular momentum. J. Differ. Eq. 256(11), 3524–3551 (2014)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Boscain U., Charlot G., Gauthier J.-P., Guérin S., Jauslin H.-R.: Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43(5), 2107–2132 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Boscain, U., Chertovskih, R.A., Gauthier, J.P., Remizov, A.O.: Hypoelliptic diffusion and human vision: a semidiscrete new twist. SIAM J. Imaging Sci. 7(2), 669–695 (2014)Google Scholar
  15. 15.
    Boscain U., Chittaro F., Mason P., Sigalotti M.: Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues. IEEE Trans. Automat. Control 57(8), 1970–1983 (2012)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Boussaid N., Caponigro M., Chambrion T.: Weakly-coupled systems in quantum control. IEEE Trans. Automat. Control. 58(9), 2205–2216 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Brockett, R., Rangan, C., Bloch, A.: The controllability of infinite quantum systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 428–433 (2003)Google Scholar
  18. 18.
    Brockett, R.W.: Lie theory and control systems defined on spheres. SIAM J. Appl. Math., 25, 213–225, 1973. Lie algebras: applications and computational methods (Conf., Drexel Univ., Philadelphia, Pa., 1972)Google Scholar
  19. 19.
    Burgarth D., Yuasa K.: Quantum system identification. Phys. Rev. Lett. 108(8), 080502 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Chambrion T.: Periodic excitations of bilinear quantum systems. Automatica 48(9), 2040–2046 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Chambrion T., Mason P., Sigalotti M., Boscain U.: Controllability of the discrete-spectrum Schrödinger equation driven by an external field. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 329–349 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Chittaro, F., Mason, P.: Adiabatic control of quantum control systems with three inputs, PreprintGoogle Scholar
  23. 23.
    Cole J.H., Schirmer S.G., Greentree A.D., Wellard C.J., Oi D.K., Hollenberg L.C.: Identifying an experimental two-state hamiltonian to arbitrary accuracy. Phys. Rev. A 71(6), 062312 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    D’Alessandro, D.: Introduction to quantum control and dynamics. In: Applied Mathematics and Nonlinear Science Series. Chapman, Hall/CRC, Boca Raton (2008)Google Scholar
  25. 25.
    Dixmier J.: Les C*-algèbres et leurs représentations. Cahiers Scientifiques, Fasc. XXIX. Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris (1964)Google Scholar
  26. 26.
    El Assoudi R., Gauthier J.P., Kupka I.A.K.: On subsemigroups of semisimple Lie groups. Ann. Inst. H. Poincaré Anal. Non Linéaire 13(1), 117–133 (1996)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Ervedoza S., Puel J.-P.: Approximate controllability for a system of Schrödinger equations modeling a single trapped ion. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 2111–2136 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Guérin, S., Jauslin, H.: Control of quantum dynamics by laser pulses: Adiabatic Floquet theory. In: Advances in Chemical Physics, vol. 125 (2003)Google Scholar
  29. 29.
    Hilgert, J., Hofmann, K.H., Lawson, J.D.: Lie groups, convex cones, and semigroups. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, Oxford Science Publications (1989)Google Scholar
  30. 30.
    Illner R., Lange H., Teismann H.: Limitations on the control of Schrödinger equations. ESAIM Control Optim. Calc. Var. 12(4), 615–635 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Jurdjevic, V.: Geometric control theory. In: Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press, Cambridge (1997)Google Scholar
  32. 32.
    Jurdjevic V., Sussmann H.J.: Control systems on Lie groups. J. Differ. Equ. 12, 313–329 (1972)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Keyl, M., Zeier, R., Schulte-Herbrueggen, T.: Controlling several atoms in a cavity. New J. Phys. 16, 065010 (2014). doi: 10.1088/1367-2630/16/6/065010
  34. 34.
    Law C.K., Eberly J.H.: Arbitrary control of a quantum electro-magnetic field. Phys. Rev. Lett. 76(7), 1055–1058 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    Leghtas Z., Turinici G., Rabitz H., Rouchon P.: Hamiltonian identification through enhanced observability utilizing quantum control. IEEE Trans. Autom. Control 57(10), 2679–2683 (2012)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Mirrahimi M.: Lyapunov control of a quantum particle in a decaying potential. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1743–1765 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Nersesyan V.: Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(3), 901–915 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Nersesyan V., Nersisyan H.: Global exact controllability in infinite time of Schrödinger equation. J. Math. Pures Appl. (9) 97(4), 295–317 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations. In: Applied Mathematical Sciences Series, Springer, New York (1983)Google Scholar
  40. 40.
    Rellich, F.: Perturbation theory of eigenvalue problems. Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz. Gordon and Breach Science Publishers, New York (1969)Google Scholar
  41. 41.
    Shore, B.W.: The Theory of Coherent Atomic Excitation, vol. 2 Set. Wiley-VCH, New York (1996)Google Scholar
  42. 42.
    Smith P.A.: Everywhere dense subgroups of Lie groups. Bull. Amer. Math. Soc. 48, 309–312 (1942)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Teufel, S.: Adiabatic perturbation theory in quantum dynamics. In: Lecture Notes in Mathematics, vol. 1821. Springer, Berlin (2003)Google Scholar
  44. 44.
    Turinici, G.: On the controllability of bilinear quantum systems. In: Defranceschi, M., Le Bris, C. (eds.) Mathematical Models and Methods for ab Initio Quantum Chemistry. Lecture Notes in Chemistry, vol. 74. Springer, Berlin (2000)Google Scholar
  45. 45.
    von Neumann, J., Wigner, E.: überdas Verhalten von Eigenwerten bei Adiabatischen Prozessen. Z. Phys. 30 ,467–470 (1929)zbMATHGoogle Scholar
  46. 46.
    Weil, A.: L’intégration dans les groupes topologiques et ses applications. Actual. Sci. Ind., no. 869. Hermann et Cie., Paris, (1940) (This book has been republished by the author at Princeton, N. J., 1941.)Google Scholar
  47. 47.
    Yuan, H., Lloyd, S.: Controllability of the coupled spin-\({\frac{1}{2}}\) harmonic oscillator system. Phys. Rev. A (3) 75(5), 052331 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ugo Boscain
    • 1
    • 2
    Email author
  • Jean-Paul Gauthier
    • 3
  • Francesco Rossi
    • 4
  • Mario Sigalotti
    • 2
  1. 1.CNRS, CMAP, École PolytechniquePalaiseauFrance
  2. 2.INRIA Saclay, Team GECOPalaiseauFrance
  3. 3.Laboratoire LSISUniversité de ToulonLa Garde CedexFrance
  4. 4.Aix-Marseille UnivLSISMarseilleFrance

Personalised recommendations