Advertisement

Communications in Mathematical Physics

, Volume 333, Issue 2, pp 565–595 | Cite as

Spectral Convergence Bounds for Classical and Quantum Markov Processes

  • Oleg SzehrEmail author
  • David Reeb
  • Michael M. Wolf
Article

Abstract

We introduce a new framework that yields spectral bounds on norms of functions of transition maps for finite, homogeneous Markov chains. The techniques employed work for bounded semigroups, in particular for classical as well as for quantum Markov chains, and they do not require additional assumptions like detailed balance, irreducibility or aperiodicity. We use the method in order to derive convergence bounds that improve significantly upon known spectral bounds. The core technical observation is that power-boundedness of transition maps of Markov chains enables a Wiener algebra functional calculus in order to upper bound any norm of any holomorphic function of the transition map. Finally, we discuss how general detailed balance conditions for quantum Markov processes lead to spectral convergence bounds.

Keywords

Markov Chain Spectral Radius Quantum Channel Functional Calculus Blaschke Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diaconis, P.: Group representations in probability and statistics. IMS Lecture Notes, Monograph Series (1988)Google Scholar
  2. 2.
    Diaconis P.: The cutoff phenomenon in finite Markov chains. Proc. Natl. Acad. Sci. 93, 1659–1664 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Diehl S., Micheli A., Kantian A., Kraus B., Büchler H., Zoller P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008)CrossRefGoogle Scholar
  4. 4.
    Evans D.: Spectral properties of positive maps on C*-algebras. J. Lond. Math. Soc. 17(2), 345–355 (1978)CrossRefzbMATHGoogle Scholar
  5. 5.
    Garcia, S.R., Ross, W.T.: A nonlinear extremal problem on the Hardy space. Comput. Methods Funct. Theory 9(2), 485–524 (2009)Google Scholar
  6. 6.
    Kraus B., Büchler H.P., Diehl S., Kantian A., Micheli A., Zoller P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    LeVeque R.J., Trefethen L.N.: On the resolvent condition in the Kreiss matrix theorem. BIT 24, 584–591 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Levin D.A., Peres Y., Wilmer E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
  9. 9.
    Meyer C.: Sensitivity of the stationary distribution of a Markov chain. SIAM J. Matrix Anal. Appl. 15(3), 715–728 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Macintyre A.D., Rogosinski W.W.: Extremum problems in the theory of analytic functions. Acta Math. 82, 275–325 (1950)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Mitrophanov A.: Stability and exponential convergence of continuous-time Markov chains. J. Appl. Probab. 40, 970–979 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mitrophanov A.: Sensitivity and convergence of uniformly ergodic Markov chains. J. Appl. Probab. 42, 1003–1014 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Nagy S.B., Foias C., Bercovici H., Kerchy L.: Harmonic Analysis of Operators on Hilbert Spaces. Springer, Berlin (2010)CrossRefGoogle Scholar
  14. 14.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  15. 15.
    Nikolski, N.: Treatise on the Shift Operator. Grundlehren der mathematischen Wissenschaft. Springer, New York (1986)Google Scholar
  16. 16.
    Nikolski N.: Condition numbers of large matrices and analytic capacities. St. Petersburg Math. J. 17, 641–682 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Nikolski, N.: Operators, Functions and Systems: An Easy Reading. Mathematical Surveys and Monographs, vol. 93. American Mathematical Society, Providence (2009)Google Scholar
  18. 18.
    Paulsen V.I.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  19. 19.
    Perez-Garcia, D., Wolf, M., Petz, D., Ruskai, M.: Contractivity of positive and trace preserving maps under L p norms. J. Math. Phys. 47 (2006). arXiv:0601063v1Google Scholar
  20. 20.
    Reeb D., Kastoryano M.J., Wolf, M.M.: Hilbert’s projective metric in quantum information theory. J. Math. Phys. 52 (2011). arXiv:1102.5170
  21. 21.
    Rosenthal J.: Convergence rates of Markov chains. SIAM 37(1995), 387–405 (1995)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sarason D.: Generalized interpolation in H . Trans. Am. Math. Soc. 127, 289–299 (1967)MathSciNetGoogle Scholar
  23. 23.
    Schmidt, W.M.: Diophantine approximation. Lecture Notes in Mathematics. Springer, Berlin (1980)Google Scholar
  24. 24.
    Seneta, E.: Non-negative matrices and Markov chains. Springer Series in Statistics (2006)Google Scholar
  25. 25.
    Smith R.R.: Completely bounded maps between C*-algebras. J. Lond. Math. Soc. 27, 157–166 (1983)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Spijker M.: On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem. BIT 31, 551–555 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Szehr, O.: Eigenvalue estimates for the resolvent of a non-normal matrix. EMS J. Spec. Theory (to appear, 2013). arXiv:1305.7208
  28. 28.
    Szehr O., Wolf M.: Perturbation bounds for quantum Markov processes and their fixed points. J. Math. Phys. 54, 032203 (2013)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tadmor E.: The resolvent condition and uniform power boundedness. Linear Algebra Appl. 80, 250–252 (1986)MathSciNetGoogle Scholar
  30. 30.
    Temme K., Kastoryano M.J., Ruskai M.B., Wolf M.M., Verstraete F.: The χ2-divergence and mixing times of quantum Markov processes. J. Math. Phys. 51, 1 (2010)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Temme K., Osborne T.J., Vollbrecht K.G., Poulin D., Verstraete F.: Quantum metropolis sampling. Nature 471, 87–90 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Versraete F., Wolf M., Cirac I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5(9), 633–663 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsTechnische Universität MünchenGarchingGermany

Personalised recommendations