Communications in Mathematical Physics

, Volume 334, Issue 2, pp 889–922 | Cite as

1-Supertransitive Subfactors with Index at Most \({6\frac{1}{5}}\)

Article

Abstract

An irreducible II1-subfactor \({A\subset B}\) is exactly 1-supertransitive if \({B\ominus A}\) is reducible as an AA bimodule. We classify exactly 1-supertransitive subfactors with index at most \({6\frac{1}{5}}\), leaving aside the composite subfactors at index exactly 6 where there are severe difficulties. Previously, such subfactors were only known up to index \({3+\sqrt{5} \approx 5.23}\). Our work is a significant extension, and also shows that index 6 is not an insurmountable barrier.

There are exactly three such subfactors with index in \({(3+\sqrt{5}, 6 \frac{1}{5}]}\), all with index \({3+2\sqrt{2}}\). One of these comes from SO(3)q at a root of unity, while the other two appear to be closely related, and are ‘braided up to a sign’.

This is the published version of arXiv:1310.8566.

Rferences

  1. AH99.
    Asaeda, M., Haagerup, U.: Exotic subfactors of finite depth with Jones indices \({(5+\sqrt{13})/2}\) and \({(5+\sqrt{17})/2}\). Commun. Math. Phys. 202(1), 1–63 (1999). arxiv:math.OA/9803044; doi:10.1007/s002200050574
  2. Ale23.
    Alexander, J.W.: A lemma on systems of knotted curves. Proc. Nat. Acad. Sci. USA 9(3), 93–95 (1923). http://www.jstor.org/stable/84367
  3. BH96.
    Bisch, D, Haagerup, U.: Composition of subfactors: new examples of infinite depth subfactors. Ann. Sci. École Norm. Sup. (4) 29(3), 329–383 (1996). http://www.numdam.org/item?id=ASENS_1996_4_29_3_329_0
  4. BJ00.
    Bisch, D., Jones, V.F.R.: Singly generated planar algebras of small dimension. Duke Math. J. 101(1), 41–75 (2000). MR1733737Google Scholar
  5. BJ03.
    Bisch D., Jones V.: Singly generated planar algebras of small dimension. II. Adv. Math. 175(2), 297–318 (2003). doi:10.1016/S0001-8708(02)00060-9 CrossRefMATHMathSciNetGoogle Scholar
  6. BJL13.
    Bisch, D., Jones, V.F.R., Liu, Z.: Singly generated planar algebras of small dimension, part III (2013, in preparation)Google Scholar
  7. BL10.
    Bhattacharyya, B., Landau, Z.: Intermediate standard invariants and intermediate planar algebras. (2010). http://www.eecs.berkeley.edu/~landau/publications.htm
  8. BMPS12.
    Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. Acta Math. 209(1), 29–82 (2012). arxiv:0909.4099; doi:10.1007/s11511-012-0081-7
  9. BNP07.
    Bisch, D., Nicoara, R., Popa, S.: Continuous families of hyperfinite subfactors with the same standard invariant. Internat. J. Math. 18(3), 255–267 (2007). arxiv:math.OA/0604460; doi:10.1142/S0129167X07004011
  10. BP14.
    Bigelow, S., Penneys, D.: Principal graph stability and the jellyfish algorithm. Math. Ann. 358(1–2), 1–24 (2014). doi:10.1007/s00208-013-0941-2; arxiv:1208.1564
  11. BV13.
    Brothier, A., Vaes, S.: Families of hyperfinite subfactors with the same standard invariant and prescribed fundamental group (2013). arxiv:1309.5354
  12. EG98.
    Etingof, P., Gelaki, S.: Semisimple Hopf algebras of dimension pq are trivial. J. Algebra 210(2), 664–669 (1998). doi:10.1006/jabr.1998.7568; arxiv:math/9801129
  13. EG12.
    Evans, D.E., Gannon, T.: Near-group fusion categories and their doubles. Adv. Math. 255, 586–640 (2014). doi:10.1016/j.aim.2013.12.014; arxiv:1208.1500
  14. FYH+85.
    Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. (N.S.) 12(2),239–246 (1985). MR776477Google Scholar
  15. GdlHJ89.
    Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras. In: Mathematical Sciences Research Institute Publications, vol. 14. Springer, New York (1989). MR999799Google Scholar
  16. Gol59.
    Goldman, M.: On subfactors of factors of type II1. Michigan Math. J. 6, 167–172 (1959). MR0107827Google Scholar
  17. GS12a.
    Grossman, P., Snyder, N.: The Brauer–Picard group of the Asaeda–Haagerup fusion categories. Trans. Am. Math. Soc. (2012, to appear). arxiv:1202.4396
  18. GS12b.
    Grossman, P., Snyder, N.: Quantum subgroups of the Haagerup fusion categories. Commun. Math. Phys. 311(3), 617–643 (2012). arxiv:1102.2631; doi:10.1007/s00220-012-1427-x
  19. Haa94.
    Haagerup, U.: Principal graphs of subfactors in the index range \({4 \, < \, [M \, : \, N] \, < \, 3 \,+ \,\sqrt2}\). In: Subfactors (Kyuzeso, 1993), pp. 1–38. World Sci. Publ., River Edge (1994). MR1317352Google Scholar
  20. IJMS12.
    Izumi, M., Jones, V.F.R., Morrison, S., Snyder, N.: Subfactors of index less than 5, Part 3: quadruple points. Commun. Math. Phys. 316(2), 531–554 (2012). arxiv:1109.3190; doi:10.1007/s00220-012-1472-5
  21. IMP13.
    Izumi, M., Morrison, S., Penneys, D.: Fusion categories between \({\mathcal{C} \boxtimes \mathcal{D}}\) and \({\mathcal{C} *\mathcal{D}}\) (2013). arxiv:1308.5723
  22. IMP+14.
    Izumi, M., Penneys, D., Peters, E., Snyder, N.: Subfactors of index exactly 5. arxiv:1406.2389
  23. Izu91.
    Izumi M.: Application of fusion rules to classification of subfactors. Publ. Res. Inst. Math. Sci. 27(6), 953–994 (1991). doi:10.2977/prims/1195169007 CrossRefMATHMathSciNetGoogle Scholar
  24. Izu01.
    Izumi M.: The structure of sectors associated with Longo–Rehren inclusions. II. Examples. Rev. Math. Phys. 13(5), 603–674 (2001). doi:10.1142/S0129055X01000818 CrossRefMATHMathSciNetGoogle Scholar
  25. JMS13.
    Jones V.F.R., Morrison S., Snyder N.: The classification of subfactors of index at most 5. Bull. Am. Math. Soc. 51, 277–327 (2014). arxiv:1304.6141
  26. Jon83.
    Jones V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983). doi:10.1007/BF01389127 ADSCrossRefMATHMathSciNetGoogle Scholar
  27. Jon99.
    Jones, V.F.R.: Planar algebras, I (1999). arxiv:math.QA/9909027
  28. Jon00.
    Jones, V.F.R.: The planar algebra of a bipartite graph. In: Knots in Hellas ’98 (Delphi). Ser. Knots Everything, vol. 24, pp. 94–117. World Sci. Publ., River Edge (2000). MR1865703Google Scholar
  29. Jon12.
    Jones, V.F.R.: Quadratic tangles in planar algebras. Duke Math. J. 161(12), 2257–2295 (2012). arxiv:1007.1158; doi:10.1215/00127094-1723608
  30. JP11.
    Jones, V.F.R., Penneys, D.: The embedding theorem for finite depth subfactor planar algebras. Quantum Topol. 2(3), 301–337 (2011). arxiv:1007.3173; doi:10.4171/QT/23
  31. Liu.
    Liu, Z.: Singly generated planar algebras with small dimensions, part IV (2014, In preparation)Google Scholar
  32. Liu13a.
    Liu, Z.: Composed inclusions of A 3 and A 4 subfactors (2013). arxiv:1308.5691
  33. Liu13b.
    Liu, Z.: Planar algebras of small thickness (2013). arxiv:1308.5656
  34. MP12a.
    Morrison, S., Penneys, D.: Constructing spoke subfactors using the jellyfish algorithm. Trans. Am. Math. Soc. (2012). arxiv:1208.3637
  35. MP12b.
    Morrison, S., Peters, E.: The little desert? Some subfactors with index in the interval \({(5,3+\sqrt{5})}\) (2012). arxiv:1205.2742
  36. MPPS12.
    Morrison, S., Penneys, D., Peters, E., Snyder, N.: Subfactors of index less than 5, Part 2: triple points. Internat. J. Math. 23(3), 1250016, 33 (2012). arxiv:1007.2240; doi:10.1142/S0129167X11007586
  37. MS12.
    Morrison, S., Snyder, N.: Subfactors of index less than 5, part 1: the principal graph odometer. Commun. Math. Phys. 312(1), 1–35 (2012). arxiv:1007.1730; doi:10.1007/s00220-012-1426-y
  38. Mg03.
    Müger, M.: From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1–2), 81–157 (2003). doi:10.1016/S0022-4049(02)00247-5: arxiv:math.CT/0111204
  39. Ocn88.
    Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, vol. 2. In: London Math. Soc. Lecture Note Ser., vol. 136, pp. 119–172. Cambridge Univ. Press, Cambridge (1988). MR996454Google Scholar
  40. Ost03.
    Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003). arxiv:math/0111139
  41. Pen13.
    Penneys, D.: Chirality and principal graph obstructions (2013). arxiv:1307.5890
  42. Pop90.
    Popa S.: Classification of subfactors: the reduction to commuting squares. Invent. Math. 101(1), 19–43 (1990). doi:10.1007/BF01231494 ADSCrossRefMATHMathSciNetGoogle Scholar
  43. Pop93.
    Popa S.: Markov traces on universal Jones algebras and subfactors of finite index. Invent. Math. 111(2), 375–405 (1993). doi:10.1007/BF01231293 ADSCrossRefMATHMathSciNetGoogle Scholar
  44. Pop94.
    Popa S.: Classification of amenable subfactors of type II. Acta Math. 172(2), 163–255 (1994). doi:10.1007/BF02392646 CrossRefMATHMathSciNetGoogle Scholar
  45. Pop95.
    Popa S.: An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(3), 427–445 (1995). doi:10.1007/BF01241137 ADSCrossRefMATHMathSciNetGoogle Scholar
  46. PP13.
    Penneys, D., Peters, E.: Calculating two-strand jellyfish relations (2013). arxiv:1308.5197
  47. PT12.
    Penneys, D., Tener, J.: Classification of subfactors of index less than 5, part 4: vines. Int. J. Math. 23(3), 1250017 (2012). arxiv:1010.3797; doi:10.1142/S0129167X11007641
  48. Szy94.
    Szymański W.: Finite index subfactors and Hopf algebra crossed products. Proc. Am. Math. Soc. 120(2), 519–528 (1994). doi:10.2307/2159890 CrossRefMATHGoogle Scholar
  49. Wen90.
    Wenzl, H.: Quantum groups and subfactors of type B, C, and D. Commun. Math. Phys. 133(2), 383–432 (1990). MR1090432Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Vanderbilt UniversityNashvilleUSA
  2. 2.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia
  3. 3.University of CaliforniaLos AngelesUSA

Personalised recommendations