Communications in Mathematical Physics

, Volume 332, Issue 3, pp 895–932 | Cite as

Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics

  • Klaus FredenhagenEmail author
  • Falk Lindner


We present a general construction of KMS states in the framework of perturbative algebraic quantum field theory (pAQFT). Our approach may be understood as an extension of the Schwinger–Keldysh formalism. We obtain in particular the Wightman functions at positive temperature, thus solving a problem posed some time ago by Steinmann (Commun Math Phys 170:405–416, 1995). The notorious infrared divergences observed in a diagrammatic expansion are shown to be absent due to a consequent exploitation of the locality properties of pAQFT. To this avail, we introduce a novel, Hamiltonian description of the interacting dynamics and find, in particular, a precise relation between relativistic QFT and rigorous quantum statistical mechanics.


Formal Power Series Free Theory Cauchy Surface Adiabatic Limit Wightman Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altherr T.: Infrared problem in \({g\varphi^4}\) theory at finite temperature. Phys. Lett. B 238(2–4), 360–366 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Anisimov A., Buchmuller W., Drewes M., Mendizabal S.: Nonequilibrium dynamics of scalar fields in a thermal bath. Ann. Phys. 324, 1234–1260 (2009)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Araki, H.: Einführung in die axiomatische Quantenfeldtheorie, 1 (ETH Zürich) (1961)Google Scholar
  4. 4.
    Araki H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. Res. Inst. Math. Sci. 9(1), 165–209 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bär C., Fredenhagen K.: Quantum field theory on curved spacetimes. Lecture Notes Phys. 786, 1–155 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Berges J.: Introduction to nonequilibrium quantum field theory. AIP Conf. Proc. 739, 3–62 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Birke L., Fröhlich J.: KMS, etc. Rev. Math. Phys. 14, 829–871 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bogolyubov N.N., Shirkov D.V.: Introduction to the Theory of Quantized Fields. Wiley, New York (1980)zbMATHGoogle Scholar
  9. 9.
    Bordemann M., Waldmann S.: Formal GNS construction and states in deformation quantization. Commun. Math. Phys. 195, 549 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bratteli O., Kishimoto A., Robinson D.W.: Stability properties and the KMS condition. Commun. Math. Phys. 61(3), 209–238 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics 2: equilibrium states. In: Models in Quantum Statistical Mechanics. Springer, Berlin (2002)Google Scholar
  12. 12.
    Bros J., Buchholz D.: Towards a relativistic KMS condition. Nucl. Phys. B429, 291–318 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bros J., Buchholz D.: Axiomatic analyticity properties and representations of particles in thermal quantum field theory. Annales Poincare Phys. Theor. 64, 495–522 (1996)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bros J., Buchholz D.: Asymptotic dynamics of thermal quantum fields. Nucl. Phys. B 627, 289–310 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Buchholz D., Solveen C.: Unruh effect and the concept of temperature. Class. Quantum Gravity 30, 085011 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chilian B., Fredenhagen K.: The time-slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513–522 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dütsch M., Fredenhagen K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219, 5–30 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dybalski W.: Haag-Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Epstein H., Glaser V.: The role of locality in perturbation theory. Annales Poincare Physique Théorique A 19, 211–295 (1973)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Epstein, H., Glaser V.: Adiabatic limit in perturbation theory. In: Velo, G., Wightman, A.S. (eds.) Renormalization Theory, vol. 23. NATO Advanced Study Institutes Series, pp. 193–254. Springer Netherlands (1976)Google Scholar
  23. 23.
    Ezawa H., Tomozawa Y., Umezawa H.: Quantum statistics of fields and multiple production of mesons. Il Nuovo Cimento 5(4), 810–841 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory (2012). arXiv:math-ph/1208.1428
  25. 25.
    Gårding L., Wightman A.S.: Fields as operator-valued distributions in relativistic quantum field theory. Arkiv för Fysik 28, 129–184 (1964)Google Scholar
  26. 26.
    Gérard C., Jäkel C.: Thermal quantum fields with spatially cutoff interactions in 1+1 space-time dimensions. J. Funct. Anal. 220, 157–213 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gérard C., Jäkel C.: Thermal quantum fields without cutoffs in 1+1 space-time dimensions. Rev. Math. Phys. 17, 113–173 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Haag R.: On quantum field theories. Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser 29(12), 1–37 (1955)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Haag R.: Local Quantum Physics. Fields Particles Algebras. Text and Monographs in Physics. Springer-Verlag, Berlin (1992)zbMATHGoogle Scholar
  30. 30.
    Haag R., Hugenholtz Nico M., Winnink M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5(3), 215–236 (1967)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Haag R., Schroer B.: Postulates of quantum field theory. J. Math. Phys. 3(2), 248–256 (1962)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hall, D., Wightman, A.S.: A theorem on invariant analytic functions with applications to relativistic quantum field theory. Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser 31(5) (1957)Google Scholar
  33. 33.
    Høegh-Krohn R.: Relativistic quantum statistical mechanics in two-dimensional space-time. Commun. Math. Phys. 38(3), 195–224 (1974)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Hollands S., Wald Robert M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223(2), 289–326 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hollands S., Wald Robert M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231(2), 309–345 (2002)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Hörmander L.: The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, Springer Study Edition. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  37. 37.
    Il’in V.A., Slavnov D.A.: Algebras of observables in the S-matrix approach. Theor. Math. Phys. 36(1), 578–585 (1978)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Jäkel, C., Robl, F.: The relativistic KMS condition for the thermal n-point functions of the P(ϕ)2 model (2011). arXiv:1103.3609
  39. 39.
    Keldysh Leonid V.: Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20(4), 1018–1026 (1965)MathSciNetGoogle Scholar
  40. 40.
    Johannes, K.K.: Dimensional regularization in position space and a forest formula for regularized Epstein-Glaser renormalization. (2010). arXiv:mathph/1006.2148
  41. 41.
    Kopper C., Müller Volkhard F., Reisz T.: Temperature independent renormalization of finite temperature field theory. Annales Henri Poincare 2, 387–402 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Landsman Nicolaas, P., van Weert Christiaan, G.: Real and imaginary time field theory at finite temperature and density Phys. Rep. 145 141 (1987)Google Scholar
  43. 43.
    Le Michel B.: Thermal Field Theory. Cambridge University Press, Cambridge (2000)Google Scholar
  44. 44.
    Lindner, F.: Perturbative Algebraic Quantum Field Theory at Finite Temperature. PhD thesis, University of Hamburg (2013)Google Scholar
  45. 45.
    Matsubara T.: A new approach to quantum-statistical mechanics. Progress Theor. Phys. 14(4), 351–378 (1955)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Matsumoto H., Ojima I., Umezawa H.: Perturbation and renormalization in thermo field dynamics. Ann. Phys. 152, 348 (1984)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Narnhofer H., Requardt M., Thirring W.: Quasi-particles at finite temperatures. Commun. Math. Phys. 92(2), 247–268 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Osterwalder K., Schrader R.: Axioms for euclidean green’s functions. Commun. Math. Phys. 31(2), 83–112 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Ruelle D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1969)zbMATHGoogle Scholar
  50. 50.
    Sakai S.: Operator Algebras in Dynamical systems. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  51. 51.
    Scharf G.: Finite Quantum Electrodynamics: the Causal Approach, vol. 5. Springer, Berlin (1995)CrossRefzbMATHGoogle Scholar
  52. 52.
    Schwinger J.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Spohn H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  54. 54.
    Steinmann O.: Perturbation theory of Wightman functions. Commun. Math. Phys. 152(3), 627–645 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Steinmann O.: Perturbative quantum field theory at positive temperatures: an axiomatic approach. Commun. Math. Phys. 170, 405–416 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Strichartz Robert S.: A Guide to Distribution Theory and Fourier Transforms. World Scientific Publishing Company, Singapore (2003)CrossRefzbMATHGoogle Scholar
  57. 57.
    Stückelberg E.C.G.: Relativistic quantum theory for finite time intervals. Phys. Rev. 81, 130–133 (1951)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Van Hove L.: Quelques propriétés générales de l’intégrale de configuration d’un système de particules avec interaction. Physica 15(11), 951–961 (1949)ADSCrossRefzbMATHGoogle Scholar
  59. 59.
    Verch R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved space-time. Commun. Math. Phys. 160, 507–536 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Zinn-Justin J. et al.: Quantum Field Theory and Critical Phenomena, vol. 142. Clarendon Press, Oxford (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.II. Institute for Theoretical PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations