Advertisement

Communications in Mathematical Physics

, Volume 332, Issue 3, pp 1017–1082 | Cite as

Asymptotic Quantum Many-Body Localization from Thermal Disorder

  • Wojciech De RoeckEmail author
  • François Huveneers
Article

Abstract

We consider a quantum lattice system with infinite-dimensional on-site Hilbert space, very similar to the Bose–Hubbard model. We investigate many-body localization in this model, induced by thermal fluctuations rather than disorder in the Hamiltonian. We provide evidence that the Green–Kubo conductivity κ(β), defined as the time-integrated current autocorrelation function, decays faster than any polynomial in the inverse temperature β as \({\beta \to 0}\). More precisely, we define approximations \({\kappa_{\tau}(\beta)}\) to κ(β) by integrating the current-current autocorrelation function up to a large but finite time \({\tau}\) and we rigorously show that \({\beta^{-n}\kappa_{\beta^{-m}}(\beta)}\) vanishes as \({\beta \to 0}\), for any \({n,m \in \mathbb{N}}\) such that mn is sufficiently large.

Keywords

Hubbard Model Cluster Expansion Adjacency Relation Disorder Strength Quantum Spin System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492 (1958)CrossRefADSGoogle Scholar
  2. 2.
    Fröhlich J., Spencer T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88(2), 151–184 (1983)CrossRefzbMATHADSGoogle Scholar
  3. 3.
    Basko D., Aleiner I., Altshuler B.: Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321(5), 1126–1205 (2006)CrossRefzbMATHADSGoogle Scholar
  4. 4.
    Vosk R., Altman E.: Many-body localization in one dimension as a dynamical renormalization group fixed point. Phys. Rev. Lett. 110(6), 067204 (2013)CrossRefADSGoogle Scholar
  5. 5.
    Pal A., Huse D.A.: Many-body localization phase transition. Phys. Rev. B 82(17), 174411 (2010)CrossRefADSGoogle Scholar
  6. 6.
    Oganesyan V., Huse D.A.: Localization of interacting fermions at high temperature. Phys. Rev. B 75(15), 155111 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Imbrie, J., Spencer, T.: Personal communication and research talks (2012)Google Scholar
  8. 8.
    Linden N., Popescu S., Short A.J., Winter A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Lebowitz J.L., Goldstein S., Mastrodonato C., Tumulka R., Zanghi N.: On the approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E 81, 011109 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Aizenman M., Warzel S.: Extended states in a Lifshitz tail regime for random Schrödinger operators on trees. Phys. Rev. Lett. 106(13), 136804 (2011)CrossRefADSGoogle Scholar
  11. 11.
    Imbrie, J., Spencer, T.: Unpublished note (2013)Google Scholar
  12. 12.
    Oganesyan V., Pal A., Huse D.A.: Energy transport in disordered classical spin chains. Phys. Rev. B 80(11), 115104 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Basko D.: Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by Arnold diffusion. Ann. Phys. 326(7), 1577–1655 (2011)MathSciNetCrossRefzbMATHADSGoogle Scholar
  14. 14.
    Fishman S., Krivolapov Y., Soffer A.: Perturbation theory for the nonlinear Schrödinger equation with a random potential. Nonlinearity 22(12), 2861 (2009)MathSciNetCrossRefzbMATHADSGoogle Scholar
  15. 15.
    Huveneers F.: Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions. Nonlinearity 26(3), 837–854 (2013)MathSciNetCrossRefzbMATHADSGoogle Scholar
  16. 16.
    Aubry S., André G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3(133), 18 (1980)Google Scholar
  17. 17.
    Iyer S., Oganesyan V., Refael G., Huse D.A.: Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013)CrossRefADSGoogle Scholar
  18. 18.
    Schiulaz, M., Müller, M.: Ideal quantum glass transitions: many-body localization without quenched disorder. arXiv:1309.1082 (2013)
  19. 19.
    De Roeck, W., Huveneers, F.: Search for many-body localization in translation-invariant systems (2014). arXiv:1405.3279
  20. 20.
    De Roeck, W., Huveneers, F.: Asymptotic localization of energy in non-disordered oscillator chains (2013). arXiv:1305.5127
  21. 21.
    Rumpf B.: Simple statistical explanation for the localization of energy in nonlinear lattices with two conserved quantities. Phys. Rev. E 69(1), 016618 (2004)CrossRefADSGoogle Scholar
  22. 22.
    Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinsky, B. (eds) Mathematical Physics 2000. Imperial College, London, p. 128 (2000)Google Scholar
  23. 23.
    Nachtergaele, B., Sims, R.: Lieb–Robinson bounds in quantum many-body physics, “Entropy and the Quantum”, Contemporary Mathematics, vol. 529. Amer. Math. Soc., Providence, pp. 141–176 (2010). arXiv:1004.2086
  24. 24.
    Abdesselam A., Procacci A., Scoppola B.: Clustering bounds on n-point correlations for unbounded spin systems. J. Stat. Phys. 136(3), 405–452 (2009)MathSciNetCrossRefzbMATHADSGoogle Scholar
  25. 25.
    Cipriani, A., Pra, P.D.: Decay of correlations for quantum spin systems with a transverse field: a dynamic approach (2010). arXiv:1005.3547
  26. 26.
    Bodineau T., Helffer B.: The log-Sobolev inequality for unbounded spin systems. J. Funct. Anal. 166(1), 168–178 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Netočný, K., Redig, F.: Large deviations for quantum spin systems. J. Stat. Phys. 117(521) (2004)Google Scholar
  28. 28.
    Ueltschi D.: Cluster expansions and correlation functions. Moscow Math. J. 4, 511–522 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Instituut voor Theoretische Fysica, K.U. LeuvenLeuvenBelgium
  2. 2.CEREMADEUniversité Paris-DauphineParis Cedex 16France

Personalised recommendations