Communications in Mathematical Physics

, Volume 332, Issue 1, pp 449–476 | Cite as

Impossibility of Local State Transformation via Hypercontractivity

Article

Abstract

Local state transformation is the problem of transforming an arbitrary number of copies of a bipartite resource state to a bipartite target state under local operations. That is, given two bipartite states, is it possible to transform an arbitrary number of copies of one of them into one copy of the other state under local operations only? This problem is a hard one in general since we assume that the number of copies of the resource state is arbitrarily large. In this paper we prove some bounds on this problem using the hypercontractivity properties of some super-operators corresponding to bipartite states. We measure hypercontractivity in terms of both the usual super-operator norms as well as completely bounded norms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirschfeld H.O.: A connection between correlation and contingency. Proc. Cambridge Philosophical Soc. 31, 520–524 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    Gebelein H.: Das statistische problem der Korrelation als variations-und Eigenwertproblem und sein Zusammenhang mit der Ausgleichungsrechnung. Z. für angewandte Math. und Mech. 21, 364–379 (1941)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Rényi A.: New version of the probabilistic generalization of the large sieve. Acta Math. Hung. 10, 217–226 (1959)CrossRefMATHGoogle Scholar
  4. 4.
    Rényi A.: On measures of dependence. Acta Math. Hung. 10, 441–451 (1959)CrossRefMATHGoogle Scholar
  5. 5.
    Beigi S.: A new quantum data processing inequality. J. Math. Phys. 54, 082202 (2013)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kamath, S., Anantharam, V.: Non-interactive simulation of joint distributions: the Hirschfeld-Gebelein-Rényi maximal correlation and the hypercontractivity ribbon. In: Proceedings of the 50th Annual Allerton Conference on Communications, Control and Computing (2012)Google Scholar
  7. 7.
    Witsenhausen H.S.: On sequences of pairs of dependent random variables. SIAM J. Appl. Math. 28, 100–113 (1975)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Ahlswede R., Gács P.: Spreading of Sets in Product Spaces and Hypercontraction of the Markov Operator. Ann. Probab. 4, 925–939 (1976)CrossRefMATHGoogle Scholar
  9. 9.
    Anantharam, V., Gohari, A., Kamath, S., Nair, C.: On maximal correlation, hypercontractivity, and the data processing inequality studied by Erkip and Cover, arXiv:1304.6133 (2013)
  10. 10.
    Raginsky, M.: Logarithmic Sobolev inequalities and strong data processing theorems for discrete channels. In: IEEE International Symposium on Information Theory (2013)Google Scholar
  11. 11.
    Nielsen M., Chuang I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  12. 12.
    Bhatia R.: Matrix Analysis. Springer, Berlin (2010)Google Scholar
  13. 13.
    Watrous J.: Notes on super-operator norms induced by schatten norms. Quantum Inf. Comput. 5, 58–68 (2005)MathSciNetGoogle Scholar
  14. 14.
    Audenaert K.M.R.: A note on the pq norms of 2-positive maps. Linear Algebra Appl. 430, 1436–1440 (2009)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Szarek S.J.: On norms of completely positive maps. Proc. IWOTA 2008 Oper. Theory: Adv. Appl. 202, 535–538 (2009)MathSciNetGoogle Scholar
  16. 16.
    Devetak I., Junge M., King C., Ruskai M.B.: Multiplicativity of completely bounded p-norms implies a new additivity result. Commun. Math. Phys. 266, 37–63 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Pisier, G.: Non-commutative vector valued L p-spaces and completely p-summing maps. Société Mathématique de France (1998)Google Scholar
  18. 18.
    Junge, M.: Factorization theory for spaces of operators, Habilitation thesis Kiel University (1996)Google Scholar
  19. 19.
    Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation, volume 47 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2002)Google Scholar
  20. 20.
    Bergh J., Löfström J.: Interpolation Spaces. Springer, New York (1976)CrossRefMATHGoogle Scholar
  21. 21.
    Lunardi, A.: An introduction to interpolation theory (2007). http://www.math.unipr.it/~lunardi/LectureNotes.html
  22. 22.
    Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)Google Scholar
  23. 23.
    Beigi S.: Sandwiched Rényi Divergence Satisfies Data Processing Inequality. J. Math. Phys. 54, 122202 (2013)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lieb, E., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Lieb, E., Simon, B., Wightman, A. (eds.) Studies in Mathematical Physics, pp. 269–303. Princeton University Press, Princeton (1976)Google Scholar
  25. 25.
    Olkiewicz R., Zegarlinski B.: Hypercontractivity in noncommutative L p spaces. J. Funct. Anal. 161(1), 246–285 (1999)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Kastoryano M.J., Temme K.: Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54, 052202 (2013)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    King C.: Hypercontractivity for semigroups of unital qubit channels. Commun. Math. Phys. 328(1), 285–301 (2014)ADSCrossRefMATHGoogle Scholar
  28. 28.
    Mossel E., Oleszkiewicz K., Sen A.: On reverse hypercontractivity. Geom. Funct. Anal. 23, 1062–1097 (2013)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Junge, M., Palazuelos, C.: Channel capacities via p-summing norms. arXiv:1305.1020 (2013)
  30. 30.
    Xu : Operator Spaces and Noncommutative L p, Lecture in the Summer School on Banach Spaces and Operator Spaces. Nankai University, China (2007)Google Scholar
  31. 31.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, volume 2: Fourier Analysis, Self-Adjointness. Elsevier, Amsterdam (1975)Google Scholar
  32. 32.
    Wilde, M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking channels. arXiv:1306.1586 (2013)
  33. 33.
    Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Rényi entropies: a new definition, some properties and several conjectures. J. Math. Phys. 54, 122203 (2013)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  2. 2.Department of Electrical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations