Communications in Mathematical Physics

, Volume 332, Issue 2, pp 713–728 | Cite as

Revisiting Additivity Violation of Quantum Channels



We prove additivity violation of minimum output entropy of quantum channels by straightforward application of \({\epsilon}\)-net argument and Lévy’s lemma. The additivity conjecture was disproved initially by Hastings. Later, a proof via asymptotic geometric analysis was presented by Aubrun, Szarek and Werner, which uses Dudley’s bound on Gaussian process (or Dvoretzky’s theorem with Schechtman’s improvement). In this paper, we develop another proof along Dvoretzky’s theorem in Milman’s view, showing additivity violation in broader regimes than the existing proofs. Importantly,Dvoretzky’s theorem works well with norms to give strong statements, but these techniques can be extended to functions which have norm-like structures-positive homogeneity and triangle inequality. Then, a connection between Hastings’ method and ours is also discussed. In addition, we make some comments on relations between regularized minimum output entropy and classical capacity of quantum channels.


Convex Body Quantum Channel Bell State Random Subspace Classical Capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASW10.
    Aubrun G., Szarek S., Werner E.: Nonadditivity of Rényi entropy and Dvoretzky’s theorem. J. Math. Phys. 51(2), 022102–022107 (2010)ADSCrossRefMathSciNetGoogle Scholar
  2. ASW11.
    Aubrun G., Szarek S., Werner E.: Hastings’s additivity counterexample via Dvoretzky’s theorem. Commun. Math. Phys. 305(1), 85–97 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. BCN13.
    Belinschi Serban, T., Collins, B., Nechita, I.: Almost one bit violation for the additivity of the minimum output entropy. arXiv:1305.1567 [math-ph], 2013
  4. BH10.
    Brandão Fernando G.S.L., Horodecki M.: On hastings’ counterexamples to the minimum output entropy additivity conjecture. Open Syst. Inf. Dyn. 17(1), 31–52 (2010)CrossRefMATHMathSciNetGoogle Scholar
  5. CFN12.
    Collins B., Fukuda M., Nechita I.: Towards a state minimizing the output entropy of a tensor product of random quantum channels. J. Math. Phys. 53(3), 032203–032220 (2012)ADSCrossRefMathSciNetGoogle Scholar
  6. CHL+08.
    Cubitt T., Harrow A.W., Leung D., Montanaro A., Winter A.: Counterexamples to additivity of minimum output p-Rényi entropy for p close to 0. Commun. Math. Phys. 284(1), 281–290 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. CN10.
    Collins B., Nechita I.: Random quantum channels I: graphical calculus and the Bell state phenomenon. Commun. Math. Phys. 297(2), 345–370 (2010)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. CN11.
    Collins B., Nechita I.: Random quantum channels II: entanglement of random subspaces, Rényi entropy estimates and additivity problems. Adv. Math. 226(2), 1181–1201 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. Dud67.
    Dudley R.M.: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290–330 (1967)CrossRefMATHMathSciNetGoogle Scholar
  10. Dvo61.
    Dvoretzky, A.: Some results on convex bodies and Banach spaces. In: Proceeding of the International Symposium Linear Spaces (Jerusalem, 1960), pp. 123–160. Jerusalem Academic Press, Jerusalem (1961)Google Scholar
  11. FK10.
    Fukuda M., King C.: Entanglement of random subspaces via the Hastings bound. J. Math. Phys. 51(4), 042201–042219 (2010)ADSCrossRefMathSciNetGoogle Scholar
  12. FKM10.
    Fukuda M., King C., Moser David K.: Comments on Hastings’ additivity counterexamples. Commun. Math. Phys. 296(1), 111–143 (2010)ADSCrossRefMATHGoogle Scholar
  13. FLM77.
    Figiel T., Lindenstrauss J., Milman V.D.: The dimension of almost spherical sections of convex bodies. Acta Math. 139(1–2), 53–94 (1977)CrossRefMATHMathSciNetGoogle Scholar
  14. FN12.
    Fukuda M., Nechita I.: Asymptotically well-behaved input states do not violate additivity for conjugate pairs of random quantum channels. Commun. Math. Phys. 328(3), 995–1021 (2014)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. FW07.
    Fukuda M., Wolf Michael M.: Simplifying additivity problems using direct sum constructions. J. Math. Phys. 48(7), 072101–072107 (2007)ADSCrossRefMathSciNetGoogle Scholar
  16. GHP10.
    Grudka A., Horodecki M., Pankowski Ł.: Constructive counterexamples to the additivity of the minimum output Rényi entropy of quantum channels for all p >  2. J. Phys. A 43(42), 425304–425307 (2010)ADSCrossRefMathSciNetGoogle Scholar
  17. Has09.
    Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255 (2009)CrossRefGoogle Scholar
  18. HLW06.
    Hayden P., Leung Debbie W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265(1), 95–117 (2006)ADSCrossRefMATHGoogle Scholar
  19. Hol98.
    Holevo A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inform. Theory 44(1), 269–273 (1998)CrossRefMATHMathSciNetGoogle Scholar
  20. Hol05.
    Holevo A.S.: On complementary channels and the additivity problem. Probab. Theory Appl. 51, 133–143 (2005)Google Scholar
  21. Hol06.
    Holevo, A.S.: The additivity problem in quantum information theory. In: International Congress of Mathematicians. vol. III, pp. 999–1018. European Mathematical Society, Zürich (2006)Google Scholar
  22. HW08.
    Hayden P., Winter A.: Counterexamples to the maximal p-norm multiplicity conjecture for all p > 1. Commun. Math. Phys. 284(1), 263–280 (2008)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. JM78.
    Jain, N.C., Marcus, M.B.: Continuity of sub-Gaussian processes. In: Probability on Banach spaces, vol. 4 of Advanced Probability Related Topics, pp. 81–196. Dekker, New York (1978)Google Scholar
  24. KMNR07.
    King C., Matsumoto K., Nathanson M., Ruskai M.B.: Properties of conjugate channels with applications to additivity and multiplicativity. Markov Process. Relat. Fields 13(2), 391–423 (2007)MATHMathSciNetGoogle Scholar
  25. KR01.
    King C., Ruskai Mary B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inform. Theory 47(1), 192–209 (2001)CrossRefMATHMathSciNetGoogle Scholar
  26. Lev51.
    Lévy, P.: Problèmes concrets d’analyse fonctionnelle. Avec un complément sur les fonctionnelles analytiques par F. Pellegrino, 2d edn. Gauthier-Villars, Paris (1951)Google Scholar
  27. Mil71.
    Milman V.D.: A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies. Funkcional. Anal. I Priložen. 5(4), 28–37 (1971)MathSciNetGoogle Scholar
  28. Mon13.
    Montanaro A.: Weak Multiplicativity for random quantum channels. Commun. Math. Phys. 319(2), 535–555 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  29. MS86.
    Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer, Berlin (1986). With an appendix by M. GromovGoogle Scholar
  30. Pis89.
    Pisier, G.: The volume of convex bodies and Banach space geometry, vol. 94 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1989)Google Scholar
  31. Sch89.
    Schechtman, G.: A remark concerning the dependence on \({\epsilon}\) in Dvoretzky’s theorem. In: Geometric aspects of functional analysis (1987–88), vol. 1376 of Lecture Notes in Mathematics, pp. 274–277. Springer, Berlin (1989)Google Scholar
  32. Sho04.
    Shor P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246(3), 453–472 (2004)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. Sti55.
    Forrest Stinespring W.: Positive functions on C*-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)MATHGoogle Scholar
  34. SW97.
    Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)ADSCrossRefGoogle Scholar
  35. WH02.
    Werner, R.F., Holevo, A.S.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43(9), 4353–4357 (2002). Quantum information theoryGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Zentrum Mathematik, M5Technische Universität MünchenGarchingGermany

Personalised recommendations